OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 22 — Aug. 1, 2007
  • pp: 5340–5346

Contrast-enhanced imaging of cerebral vasculature with laser speckle

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor  »View Author Affiliations

Applied Optics, Vol. 46, Issue 22, pp. 5340-5346 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20   μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2–4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%–30% more vascular structures without the introduction of any contrast agent.

© 2007 Optical Society of America

OCIS Codes
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 2, 2007
Manuscript Accepted: May 8, 2007
Published: July 12, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, "Contrast-enhanced imaging of cerebral vasculature with laser speckle," Appl. Opt. 46, 5340-5346 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994). [CrossRef]
  2. F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990). [PubMed]
  3. D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003). [CrossRef] [PubMed]
  4. R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003). [PubMed]
  5. M. Schumacher, "Microangiographic study of the normal anatomy of the cerebral venous system in rats," Neuroradiology 26, 137-140 (1984). [CrossRef] [PubMed]
  6. R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).
  7. S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).
  8. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996). [CrossRef]
  9. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  10. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994). [PubMed]
  11. B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method," Med. Eng. Phys. 16, 105-111 (1994). [CrossRef] [PubMed]
  12. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004). [CrossRef] [PubMed]
  13. A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003). [CrossRef] [PubMed]
  14. A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006). [CrossRef]
  15. A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004). [CrossRef] [PubMed]
  16. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003). [CrossRef] [PubMed]
  17. A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005). [CrossRef]
  18. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31, 1824-1826 (2009). [CrossRef]
  19. J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976). [CrossRef]
  20. J. D. Briers, "Laser Doppler and time-varying speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996). [CrossRef]
  21. J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976). [CrossRef]
  22. E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002). [CrossRef] [PubMed]
  23. W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005). [CrossRef]
  24. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005). [CrossRef] [PubMed]
  25. J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).
  26. K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.
  27. X. M. Song, B. W. Pogue, S. D. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited