OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5887–5894

Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging

Youxin Mao, Shoude Chang, Sherif Sherif, and Costel Flueraru  »View Author Affiliations


Applied Optics, Vol. 46, Issue 23, pp. 5887-5894 (2007)
http://dx.doi.org/10.1364/AO.46.005887


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quality and parameters of probing optical beams are extremely important in biomedical imaging systems both for image quality and light coupling efficiency considerations. For example, the shape, size, focal position, and focal range of such beams could have a great impact on the lateral resolution, penetration depth, and signal-to-noise ratio of the image in optical coherence tomography. We present a beam profile characterization of different variations of graded-index (GRIN) fiber lenses, which were recently proposed for biomedical imaging probes. Those GRIN lens modules are made of a single mode fiber and a GRIN fiber lens with or without a fiber spacer between them. We discuss theoretical analysis methods, fabrication techniques, and measured performance compared with theory.

© 2007 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 17, 2007
Revised Manuscript: April 5, 2007
Manuscript Accepted: June 20, 2007
Published: August 9, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Youxin Mao, Shoude Chang, Sherif Sherif, and Costel Flueraru, "Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging," Appl. Opt. 46, 5887-5894 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-23-5887


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic image of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997). [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherernce tomography," Opt. Lett. 22, 1439-1441 (1997). [CrossRef]
  4. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Ultrahigh-velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography," Proc. SPIE 4251, 156-164 (2001). [CrossRef]
  5. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance," Opt. Express 11, 794-809 (2003). [CrossRef] [PubMed]
  6. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H.Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  7. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000). [CrossRef]
  8. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000). [CrossRef]
  9. Y. Zhao, Z. P. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358-1360 (2000). [CrossRef]
  10. V. X. D. Yang, S. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. Haber, G. Kandel, I. A. Vitkin, and B. C. Wilson, "Endoscopic Doppler optical coherence tomography in human gastrointestinal tract: initial experience," Gastrointest. Endosc. 61, 879-890 (2005). [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004). [CrossRef] [PubMed]
  12. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000). [CrossRef]
  13. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, "Interstitial Doppler optical coherence tomography," Opt. Lett. 30, 1791-1793 (2005). [CrossRef] [PubMed]
  14. J. G. Fujimoto, S. A. Bopart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, "High resolution in vivo intra-arterial imaging with optical coherence tomography," Heart 82, 128-133 (1999). [PubMed]
  15. L. J. Diaz-Sandoval, B. E. Bouma, G. J. Tearnay, and I. Jang, "Optical coherence tomography as a tool for percutaneous coronary interventions," Catheter. Cardio. Interv. 65, 492-496 (2005). [CrossRef]
  16. E. Swanson, C. L. Petersen, E. McNamara, R. B. Lamport, and D. L. Kelly, "Ultrasmall optical probes, imaging optics, and methods for using same," U.S. Patent 6445939 (3 September 2002).
  17. W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002). [CrossRef]
  18. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. Tang, and J. M. Schmitt, "Optical coherence tomography in the diagnosis and treatment of neurological disorders," J. Biomed. Opt. 10(5), 051603 (2005). [CrossRef] [PubMed]
  19. H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surgery Med. 38, 754-761 (2006). [CrossRef]
  20. A. W. Sainter, T. A. King, and M. R. Dickinson, "Theoretical comparison of light sources for use in optical coherence tomography," Proc. SPIE 4619, 289-299 (2002). [CrossRef]
  21. H. W. Kogelnik and T. Li, "Laser beam and resonators," Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  22. W. L. Emkey and C. A. Jack, "Analysis and evaluation of graded-index fiber-lenses," J. Lightwave Technol. LT-5, 1156-1164 (1987). [CrossRef]
  23. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, and J. G. Fujimoto, "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2261-2263 (2004). [CrossRef] [PubMed]
  24. V. X. D. Yang, Y. Mao, B. A. Standish, N. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, "Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking," Opt. Lett. 31, 1262-1264 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited