OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 23 — Aug. 10, 2007
  • pp: 5967–5973

Dispersion balancing of variable-delay monolithic pulse splitters

Philip Schlup, Jesse Wilson, Klaus Hartinger, and Randy A. Bartels  »View Author Affiliations

Applied Optics, Vol. 46, Issue 23, pp. 5967-5973 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the use of birefringent materials to attain pulse separations suitable for pump–probe spectroscopy and spectral interferometry. By choice of material thickness and cut angle, it is possible to balance second-order dispersion while allowing for variable delays. The generated pulse pair is used to calibrate the phase response of an ultrafast liquid-crystal pulse shaper, and in the measurement of a rotational wave packet in impulsively aligned CO 2 molecules.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.1360) Optical devices : Beam splitters
(320.5550) Ultrafast optics : Pulses
(320.7080) Ultrafast optics : Ultrafast devices
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

Original Manuscript: April 2, 2007
Revised Manuscript: June 8, 2007
Manuscript Accepted: June 10, 2007
Published: August 9, 2007

Philip Schlup, Jesse Wilson, Klaus Hartinger, and Randy A. Bartels, "Dispersion balancing of variable-delay monolithic pulse splitters," Appl. Opt. 46, 5967-5973 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. P. Hannaford, Femtosecond Laser Spectroscopy (Springer, 2006).
  2. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. Arnaud, "Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques," Appl. Opt. 19, 3749-3755 (1980). [CrossRef] [PubMed]
  3. D. Meshulach, D. Yelin, and Y. Silberberg, "White light dispersion measurements by one- and two-dimensional spectral interference," IEEE J. Quantum Electron. 33, 1969-1974 (1997). [CrossRef]
  4. P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, "Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film," Opt. Express 14, 7678-7685 (2006). [CrossRef] [PubMed]
  5. A. B. Vakhtin, K. A. Peterson, W. R. Wood, and D. J. Kane, "Differential spectral interferometry: an imaging technique for biomedical applications," Opt. Lett. 28, 1332-1334 (2003). [CrossRef] [PubMed]
  6. K. Y. Kim, I. Alexeev, and H. M. Milchberg, "Single-shot supercontinuum spectral interferometry," Appl. Phys. Lett. 81, 4124 (2002). [CrossRef]
  7. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000), and references therein. [CrossRef]
  8. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer-Verlag, 2006).
  9. B. D. Guenther, Modern Optics (Wiley, 1990).
  10. G. Ghosh and G. Bhar, "Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices," IEEE J. Quantum Electron. QE-18, 143-145 (1982). [CrossRef]
  11. Parasitic nonlinear frequency conversion from phase-matched processes is readily suppressed in the large crystal lengths necessary for macroscopic pulse separations due to narrow acceptance bandwidths. A small detuning of the crystal angle is sufficient to suppress the undesired interactions. For example, a 12 mm KDP cut such that θ = 45° introduces a 1 ps delay and is simultaneously phase matched for type-I second-harmonic generation (SHG) at 800 nm. The acceptance angle is 1.8 mrad cm . The detuning of 1.5 mrad required to suppress SHG changes the pulse separation by 30 fs or 0.3%. The phase-matching angle for, in this case the more efficient, type-II SHG is 71° and is thus not phase matched.
  12. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, "High-efficiency and narrow-linewidth operation of a 2-crystal β-BaB2O4 optical parametric oscillator," Appl. Phys. Lett. 55, 1952-1954 (1989). [CrossRef]
  13. K. Kato, "Second-harmonic generation to 2048 Å in β-Ba2O4," IEEE J. Quantum Electron QE-22, 1013-1014 (1986). [CrossRef]
  14. G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Opt. Commun. 163, 95-102 (1999). [CrossRef]
  15. K. Kato and E. Takaoka, "Sellmeier and thermo-optic dispersion formulas for KTP," Appl. Opt. 41, 5040-5044 (2002). [CrossRef] [PubMed]
  16. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion-equation for congruently grown lithium-niobate," Opt. Quantum Electron. 16, 373-375 (1984). [CrossRef]
  17. A. C. DeFranzo and B. G. Pazol, "Index of refraction measurement on sapphire at low temperatures and visible wavelengths," Appl. Opt. 32, 2224-2234 (1993). [CrossRef] [PubMed]
  18. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  19. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. B 72, 156-160 (1982). [CrossRef]
  20. H. Stapelfeldt and T. Seideman, "Colloquium: Aligning molecules with strong laser pulses," Rev. Mod. Phys. 75, 543-557 (2003), and references therein. [CrossRef]
  21. R. A. Bartels, T. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets," Phys. Rev. Lett. 88, 013909 (2002). [CrossRef]
  22. R. A. Bartels and K. Hartinger, "Pulse polarization splitting in a transient wave plate," Opt. Lett. 31, 3526-3528 (2006). [CrossRef] [PubMed]
  23. SNLO nonlinear optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, New Mexico 87185-1423.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited