OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 25 — Sep. 1, 2007
  • pp: 6251–6255

Focal shift in focused radially polarized ultrashort pulsed laser beams

Guohua Wu, Qihong Lou, Jun Zhou, Jingxing Dong, and Yungrong Wei  »View Author Affiliations


Applied Optics, Vol. 46, Issue 25, pp. 6251-6255 (2007)
http://dx.doi.org/10.1364/AO.46.006251


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Beginning with a beam coherence polarization (BCP) matrix, we obtain an analytical intensity expression for radially polarized ultrashort pulsed laser beams that pass through an apertureless aplanatic lens. We also investigate the intensity distribution of radially polarized beams in the vicinity of the focus. The focal shift of these beams is studied in detail. The focal shift depends strongly on Z F that coincides with π times the Fresnel number.

© 2007 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: March 29, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 18, 2007
Published: August 22, 2007

Citation
Guohua Wu, Qihong Lou, Jun Zhou, Jingxing Dong, and Yungrong Wei, "Focal shift in focused radially polarized ultrashort pulsed laser beams," Appl. Opt. 46, 6251-6255 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-25-6251


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Li and E. Wolf, "Focal shifts in diffracted converging spherical waves," Opt. Commun. 39, 211-215 (1981). [CrossRef]
  2. Y. Li, "Dependence of the focal shift on Fresnel number and f number," J. Opt. Soc. Am. 72, 770-775 (1982).
  3. Y. Li and E. Wolf, "Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers," J. Opt. Soc. Am. A 1, 801-808 (1984).
  4. W. H. Carter, "Focal shift and concept of effective Fresnel number for a Gaussian laser beam," Appl. Opt. 21, 1989-1994 (1982).
  5. C. J. R. Sheppard and K. G. Larkin, "Focal shift, optical transfer function, and phase-space representations," J. Opt. Soc. Am. A 17, 772-779 (2000). [CrossRef]
  6. R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-248 (1998). [CrossRef]
  7. G. D. Sucha and W. H. Carter, "Focal shift for a Gaussian beam: an experimental study," Appl. Opt. 23, 4345-4347 (1984).
  8. P. L. Greene and D. G. Hall, "Focal shift in vector beams," Opt. Express 4, 411-419 (1999).
  9. J. Pu and B. Lü, "Focal shifts in focused nonumiformly polarized beams," J. Opt. Soc. Am. A 18, 2760-2766 (2001). [CrossRef]
  10. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, "Beam coherence-polarization matrix," Pure Appl. Opt. 7, 941-951 (1998). [CrossRef]
  11. G. P. Agrawal and E. Wolf, "Propagation-induced polarization changes in partially coherent optical beams," J. Opt. Soc. Am. A 17, 2019-2023 (2000). [CrossRef]
  12. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficient," J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  13. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  14. C. Varin and M. Piché, "Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams," Appl. Phys. B 74, S83-S88 (2002). [CrossRef]
  15. K. T. Gahagan and G. A. Swartzlander, Jr., "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," J. Opt. Soc. Am. B 16, 533-537 (1999). [CrossRef]
  16. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
  17. C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, "A new method for generating axially symmetric and radially polarized beams," J. Phys. D 38, 827-832 (2005). [CrossRef]
  18. A. A. Tovar, "Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams," J. Opt. Soc. Am. A 15, 2705-2711 (1998). [CrossRef]
  19. D. Deng, "Nonparaxial propagation of radially polarized light beams," J. Opt. Soc. Am. B 23, 1228-1234 (2006). [CrossRef]
  20. C. Palma, G. Cincotti, and G. Guattari, "Spectral shift of a Gaussian Schell-model beam beyond a thin lens," IEEE J. Quantum Electron. 34, 378-383 (1998). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited