OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 26 — Sep. 10, 2007
  • pp: 6498–6503

A heuristic technique for CTIS image reconstruction

Michael D. Vose and Mitchel D. Horton  »View Author Affiliations


Applied Optics, Vol. 46, Issue 26, pp. 6498-6503 (2007)
http://dx.doi.org/10.1364/AO.46.006498


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative method is presented for computed tomography imaging spectrometer (CTIS) image reconstruction in the presence of both photon noise in the image and postdetection Gaussian system noise. The new algorithm, which assumes the transfer matrix of the system has a particular structure, is evaluated experimentally with the result that it is significantly better, for larger problems, than both the multiplicative algebraic reconstruction technique (MART) and the mixed-expectation image-reconstruction technique (MERT) with respect to accuracy and computation time.

© 2007 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration

ToC Category:
Image Processing

History
Original Manuscript: December 4, 2006
Revised Manuscript: July 17, 2007
Manuscript Accepted: July 24, 2007
Published: September 5, 2007

Citation
Michael D. Vose and Mitchel D. Horton, "A heuristic technique for CTIS image reconstruction," Appl. Opt. 46, 6498-6503 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-26-6498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. H. Barrett, "Image reconstruction and the solution of inverse problems in medical imaging," in The Formation, Handling, and Evaluation of Medical Images, A. Todd-Pokropek and M. A. Viergever, eds. (Springer-Verlag, 1991), pp. 33-39.
  2. T. R. Miller and J. W. Wallis, "Clinically important characteristics of maximum-likelihood reconstruction," J. Nucl. Med. 33, 1678-1684 (1992).
  3. M. R. Descour, "Non-scanning imaging spectrometry," Ph.D. dissertation (University of Arizona, 1994).
  4. M. R. Descour, B. K. Ford, D. W. Wilson, P. D. Maker, and G. H. Bearman, "High-speed spectral imager for imaging transient fluorescence phenomena," Proc. SPIE 3259, 11-17 (1998). [CrossRef]
  5. C. E. Volin, J. P. Garcia, E. L. Dereniak, M. R. Descour, T. Hamilton, and R. McMillan, "Midwave-infrared shapshot imaging spectrometer," Appl. Opt. 40, 4501-4506 (2001). [CrossRef]
  6. B. K. Ford and M. R. Descour, "Large-image-format computed tomography imaging spectrometer for fluorescence microscopy," Opt. Express 9, 444-453 (2001).
  7. B. Karacali and W. Snyder, "Automatic target detection using multispectral imaging," presented at the 31st Applied Imagery Pattern Recognition Workshop, 16 October 2002, Washington, DC, p. 55.
  8. E. K. Hege, D. O'Connell, W. Johnson, S. Basty, and E. L. Dereniak, "Hyperspectral imaging for astronomy and space surviellance," Proc. SPIE 5159, 380-391 (2003). [CrossRef]
  9. M. R. Descour, T. S. Tkaczyk, B. K. Ford, R. M. Lynch, A. Locke, and E. L. Dereniak, "The computed tomography imaging spectrometer," in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 (IEEE, 2003), pp. 460-461. [CrossRef]
  10. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, "Snapshot hyperspectral imaging in ophthalmology," J. Biomed. Opt. 12, 014036 (2007). [CrossRef]
  11. N. Hagen, E. L. Dereniak, and D. T. Sass, "Development of a four-dimensional imaging spectrometer," Proc. SPIE 4816, 381-388 (2002). [CrossRef]
  12. J. F. Scholl, E. L. Dereniak, M. R. Descour, C. P. Tebow, and C. E. Volin, "Phase grating design for a dual-band snapshot imaging spectrometer," Appl. Opt. 42, 3745-3748 (2003). [CrossRef]
  13. N. Hagen, E. L. Dereniak, and D. T. Sass, "Visible snapshot imaging spectropolarimeter," Proc. SPIE 5888, 277-286 (2005).
  14. N. Hagen and E. L. Dereniak, "Design of an LWIR snapshot imaging spectropolarimeter," Proc. SPIE 6295, 62950E (2006). [CrossRef]
  15. R. W. Aumiller, N. Hagen, E. L. Dereniak, S. Robert, and R. McMillan, "New grating designs for a CTIS imaging spectrometer," Proc. SPIE 6565, 62950E (2007).
  16. M. R. Descour, C. E. Volin, T. M. Gleeson, E. L. Dereniak, M. F. Hopkins, D. W. Wilson, and P. D. Maker, "Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser," Appl. Opt. 36, 3694-3698 (1997).
  17. J. P. Garcia and E. L. Dereniak, "Mixed-expectation image-reconstruction technique," Appl. Opt. 38, 3745-3748 (1999).
  18. M. R. Descour and E. L. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
  19. W. R. Johnson, E. K. Hege, D. O'Connell, and E. L. Dereniak, "Novel calibration recovery technique for an EM tomographic reconstruction," Opt. Eng. 43, 10-11 (2004). [CrossRef]
  20. C. E. Volin, J. P. Garcia, E. L. Dereniak, M. R. Descour, D. T. Sass, and C. G. Simi, "MWIR computed tomography imaging spectrometer: calibration and imaging experiments," Proc. SPIE 3753, 192-202 (1999). [CrossRef]
  21. C. E. Volin, "Portable snapshot imaging spectrometer," Ph.D. dissertation (University of Arizona, 2000).
  22. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge U. Press, 1994).
  23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, "Sherman-Morrison and Woodbury formulas," in Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 66-68.
  24. P. J. Davis, Circulant Matrices (Chelsea, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited