OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 27 — Sep. 20, 2007
  • pp: 6759–6769

Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides

Shang-Da Yang, Houxun Miao, Zhi Jiang, Andrew M. Weiner, Krishnan R. Parameswaran, and Martin M. Fejer  »View Author Affiliations


Applied Optics, Vol. 46, Issue 27, pp. 6759-6769 (2007)
http://dx.doi.org/10.1364/AO.46.006759


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have used aperiodically poled lithium niobate waveguides to perform intensity autocorrelation and frequency-resolved optical gating (FROG) measurements for ultraweak femtosecond pulses at 1.5   μm wavelength. The required pulse energies for intensity autocorrelation and FROG are as low as 52 aJ and 124 aJ, respectively. The corresponding sensitivities are 3 .2 × 10 7 mW 2 and 2.7 × 10 6 mW 2 , about 3–5 orders of magnitude better than the previous records. The high nonlinear conversion efficiency is attributed to the long waveguide structure, and the needed broad phase-matching bandwidth is realized by chirping the poling period. We discuss the theory of intensity autocorrelation and FROG measurements in the presence of different phase-matching bandwidths, and we show, for the first time to our knowledge, that the distorted intensity autocorrelation trace due to a δ-like phase-matching spectrum is described by a modified field autocorrelation function. We also report new experimental results comparing autocorrelation traces measured with chirped and unchirped waveguide samples and demonstrating high-quality FROG measurements for cubic phase waveforms generated in a programmable pulse shaper.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.3730) Integrated optics : Lithium niobate
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 15, 2007
Revised Manuscript: July 22, 2007
Manuscript Accepted: July 22, 2007
Published: September 12, 2007

Citation
Shang-Da Yang, Houxun Miao, Zhi Jiang, Andrew M. Weiner, Krishnan R. Parameswaran, and Martin M. Fejer, "Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides," Appl. Opt. 46, 6759-6769 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-27-6759


Sort:  Year  |  Journal  |  Reset  

References

  1. B. C. Thomsen, D. A. Reid, R. T. Watts, L. P. Barry, and J. D. Harvey, "Characterization of 40-Gbit/s pulses using a lithium niobate modulator at 1550 nm using frequency resolved optical gating," IEEE Trans. Instrum. Meas. 53, 186-191 (2004). [CrossRef]
  2. J. P. Ogilvie, D. Débarre, X. Solinas, J. Martin, E. Beaurepaire, and M. Joffre, "Use of coherent control for selective two-photon fluorescence microscopy in live organisms," Opt. Express 14, 759-766 (2006). [CrossRef] [PubMed]
  3. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Four-user, 2.5-Gb/s, spectrally coded OCDMA system demonstration using low-power nonlinear processing," J. Lightwave Technol. 23, 143-158 (2005). [CrossRef]
  4. N. Belabas and M. Joffre, "Visible-infrared two-dimensional Fourier-transform spectroscopy," Opt. Lett. 27, 2043-2045 (2002). [CrossRef]
  5. S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784-793 (2004). [CrossRef]
  6. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, "Measurement of the intensity and phase of ultraweak, ultrashort laser pulses," Opt. Lett. 21, 884-886 (1996). [CrossRef] [PubMed]
  7. C. Dorrer and I. Kang, "Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains," IEEE Photon. Technol. Lett. 16, 858-860 (2004). [CrossRef]
  8. J.-Y. Zhang, A. P. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, "Measurement of intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating," Opt. Express 11, 601-609 (2003). [CrossRef] [PubMed]
  9. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  10. A. M. Weiner, "Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation," IEEE J. Quantum Electron. 19, 1276-1283 (1983). [CrossRef]
  11. J. D. Harvey, J. M. Dudley, D. C. Thomsen, and L. P. Barry, "Ultra-sensitive autocorrelation using two photon absorption," in Optical Fiber Communications Conference (Optical Society of America, 1999), Vol. 3, pp. 2-4.
  12. C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, "Ultra-sensitive autocorrelation of 1.5 μm light with single photon counting silicon avalanche photodiode," Electron. Lett. 38, 86-88 (2002). [CrossRef]
  13. J. M. Roth, T. E. Murphy, and C. Xu, "Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube," Opt. Lett. 27, 2076-2078 (2002). [CrossRef]
  14. L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Autocorrelation and ultrafast optical thresholding at 1.5 μm using a commercial InGaAsP 1.3 μm laser diode," Electron. Lett. 34, 358-360 (1998). [CrossRef]
  15. P.-A. Lacourt, M. Hanna, and J. M. Dudley, "Broad-band and ultrasensitive pulse characterization using frequency-resolved optical gating via four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 17, 157-159 (2005). [CrossRef]
  16. P.-A. Lacourt, J. M. Dudley, J.-M. Merolla, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, "Milliwatt-peak-power pulse characterization at 1.55 μm by wavelength-conversion frequency-resolved optical gating," Opt. Lett. 27, 863-865 (2002). [CrossRef]
  17. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, "400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 μm," Opt. Lett. 29, 2070-2072 (2004). [CrossRef] [PubMed]
  18. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, "Ultra-sensitive frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 μm," Opt. Lett. 30, 2164-2166 (2005). [CrossRef] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  20. A. M. Weiner, Ultrafast Optics (Wiley, 2007).
  21. E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses: Picosecond Techniques and Applications, S. L. Shapiro, ed. (Springer-Verlag, 1977), Vol. 18.
  22. S.-D. Yang and Y.-Y. Huang, "Even-order spectral phase retrieval by modified interferometric field autocorrelation trace," to be presented at the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Lake Buena Vista, Fla., 21-25 October 2007.
  23. J. Prawiharjo, F. Parmigiani, K. Gallo, P. Petropoulos, N. G. R. Broderick, and D. J. Richardson, "Casecaded χ(2) interaction based frequency-resolved optical gating in a periodically-poled LiNbO3 waveguide," Opt. Lett. 31, 244-246 (2006). [CrossRef] [PubMed]
  24. G. Stibenz and G. Steinmeyer, "Interferometric frequency-resolved optical gating," Opt. Express 13, 2617-2626 (2005). [CrossRef] [PubMed]
  25. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, "Measurement of 10-fs laser pulses," IEEE J. Sel. Top. Quantum Electron. 2, 575-585 (1996). [CrossRef]
  26. B. Seifert, H. Stolz, and M. Tasche, "Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness," J. Opt. Soc. Am. B 21, 1089-1097 (2004). [CrossRef]
  27. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  28. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matched gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000). [CrossRef]
  29. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999). [CrossRef]
  30. Y. W. Lee, F. C. Fan, Y. C. Haung, B. Y. Gu, B. Z. Dong, and M. H. Chou, "Nonlinear multiwavelength conversion based on aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002). [CrossRef]
  31. C. R. Fernández-Pousa and J. Capmany, "Dammann grating design of domain-engineered lithium niobate for equalized wavelength conversion grids," IEEE Photon. Technol. Lett. 17, 1037-1039 (2005). [CrossRef]
  32. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, "Amplitude modulation and apodization of quasi-phase-matched interactions," Opt. Lett. 31, 604-606 (2006). [CrossRef] [PubMed]
  33. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenburg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995). [CrossRef]
  34. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43-45 (2002). [CrossRef]
  35. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179-181 (2002). [CrossRef]
  36. Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, "Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide," Opt. Express 11, 2813-2819 (2003). [CrossRef] [PubMed]
  37. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997). [CrossRef]
  38. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  39. H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, "Polarization-insensitive ultralow-power second-harmonic generation frequency-resolved optical gating," Opt. Lett. 32, 874-876 (2007). [CrossRef] [PubMed]
  40. J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, "Mode multiplexing in optical frequency mixers," Opt. Lett. 29, 551-553 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited