OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 28 — Oct. 1, 2007
  • pp: 6923–6935

Multilaser Herriott cell for planetary tunable laser spectrometers

Christopher G. Tarsitano and Christopher R. Webster  »View Author Affiliations


Applied Optics, Vol. 46, Issue 28, pp. 6923-6935 (2007)
http://dx.doi.org/10.1364/AO.46.006923


View Full Text Article

Enhanced HTML    Acrobat PDF (1771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

© 2007 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(080.2740) Geometric optics : Geometric optical design
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6190) Spectroscopy : Spectrometers
(350.6090) Other areas of optics : Space optics

ToC Category:
Geometric Optics

History
Original Manuscript: August 17, 2006
Revised Manuscript: July 25, 2007
Manuscript Accepted: August 6, 2007
Published: September 24, 2007

Citation
Christopher G. Tarsitano and Christopher R. Webster, "Multilaser Herriott cell for planetary tunable laser spectrometers," Appl. Opt. 46, 6923-6935 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-28-6923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994). [CrossRef] [PubMed]
  3. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998). [CrossRef]
  4. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006). [CrossRef]
  5. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005). [CrossRef]
  6. R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlattices Microstruct. 17, 77-83 (1995). [CrossRef]
  7. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996). [CrossRef]
  8. R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004). [CrossRef]
  9. R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005). [CrossRef]
  10. W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006). [CrossRef]
  11. K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006). [CrossRef]
  12. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998). [CrossRef]
  13. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  14. D. R. Herriott and H. J. Schulte, "Folded optical delay lines," Appl. Opt. 4, 883-889 (1965). [CrossRef]
  15. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, "Astigmatic mirror multpass absorption cells for long-path-length spectroscopy," Appl. Opt. 34, 3336-3348 (1995). [CrossRef] [PubMed]
  16. V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004). [CrossRef]
  17. C. R. Webster, "Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy," Appl. Opt. 44, 1226-1235 (2005). [CrossRef] [PubMed]
  18. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  19. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523-526 (1964). [CrossRef]
  20. J. B. McManus and P. L. Kebabian, "Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type," Appl. Opt. 29, 898-900 (1990). [CrossRef] [PubMed]
  21. G. Moreau, C. Robert, V. Catoire, M. Chartier, C. Camy-Peyret, N. Huret, M. Pirre, L. Pomathiod, and G. Chalumeau, "SPIRALE: a multispecies in situ balloonborne instrument with six tunable diode laser spectrometers," Appl. Opt. 44, 5972-5989 (2005). [CrossRef] [PubMed]
  22. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, "Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3," Appl. Opt. 33, 454-472 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited