OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 29 — Oct. 10, 2007
  • pp: 7091–7098

Improved ray tracing air mass numbers model

Sergey N. Kivalov  »View Author Affiliations

Applied Optics, Vol. 46, Issue 29, pp. 7091-7098 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved ray tracing air mass model to calculate the air mass numbers for the entire zenith angle range is developed. The improved model uses the approach when the trajectory element of light in the atmosphere is approximated by an arc of a circle. This way the angles at the beginning and at the end of the trajectory element can be counted simultaneously. This approach gives the second-order approximation for the real light trajectory with more accurate results than the results of the approaches of Link and Neuzil (Tables of Light Trajectories in the Terrestrial Atmosphere, Hermann, 1969) and the Kasten and Young models [Appl. Opt. 28, 4735 (1989)]. The developed model allows us to avoid the calculation problems of the Link and Neuzil and Kasten models when the zenith angle is close to or equal to 90°. As a result, we deliver the new air mass number table for the entire zenith angle range and provide the comparison of the developed model results with the results of the Link and Neuzil and the Kasten models.

© 2007 Optical Society of America

OCIS Codes
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis
(010.1290) Atmospheric and oceanic optics : Atmospheric optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 12, 2007
Revised Manuscript: July 5, 2007
Manuscript Accepted: July 31, 2007
Published: October 1, 2007

Sergey N. Kivalov, "Improved ray tracing air mass numbers model," Appl. Opt. 46, 7091-7098 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. T. Young, "Cassini's Model," http://mintaka.sdsu.edu/GF/explain/atmos_refr/models/Cassini.html.
  2. B. Oriani, De Refractionibus Astronomicis Ephemerides Astronomicae Anni 1788: Appendix ad Ephemerides Anni 1788 (Appresso Giuseppe Galeazzi, 1787), pp. 164-277.
  3. J. B. Biot, Sur les Réfractions Astronomiques (Additions à la Conn. des Temps de 1839) (De l'Académie des Sciences, 1836), pp. 3-114.
  4. J. D. Forbes, "On the transparency of the atmosphere and the law of extinction of the solar rays in passing through it," Philos. Trans. R. Soc. London 132, 225-273 (1842). [CrossRef]
  5. P. Bouguer, Traité d'Optique sur la Gradation de la Lumière (Mem. de l'Académie Royale des Sciences. H. L. Guerin and L. F. Delatour, 1760).
  6. P. S. Laplace, Traité de Mecanique Celeste (Chez J. B. M. Duhrat, 1805), Vol. 4, Chap. 3.
  7. P. S. Laplace, Celestial Mechanics. Translated with a commentary, by Nathaniel Bowditch (Chelsea Publishing, 1966).
  8. A. T. Young, "Understanding astronomical refraction," Observatory 126, 82-115 (2006).
  9. A. Bemporad, "Sulla teoria d'estinzione di Bouguer," Mem. Soc. Astron. Ital. 30, 217-236 (1901).
  10. A. Bemporad, Zur Theorie der Extinktion des Lichtes (Mitteilungen der Grossh. Sternwarte, 1904).
  11. F. Link and L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, 1969).
  12. U.S. Standard Atmosphere Supplements, 1966 (U.S. Government Printing Office, 1966).
  13. F. Kasten, "A new table and approximation formula for the relative optical air mass," Arch. Meteorol. , Geophys. Bioklimatol., Ser. B 14, 206-223 (1965).
  14. International Organization for Standardization, Standard Atmosphere, International Standard ISO2533 (1972).
  15. F. Kasten and A. T. Young, "Revised optical air mass tables and approximations formula," Appl. Opt. 28, 4735-4738 (1989). [CrossRef] [PubMed]
  16. A. T. Young, "Laplace's extinction theorem" (2006), http://mintaka.sdsu.edu/GF/explain/extinction/Laplace.html.
  17. L. H. Auer and E. M. Standish, "Astronomical refraction: computational method for all zenith angles," Astron. J. 119, 2472-2477 (2000). [CrossRef]
  18. C. Y. Hohenkerk and A. T. Sinclair, The Computation of Angular Atmospheric Refraction at Large Zenith Angles (NAO technical note, Royal Greenwich Observatory, 1985).
  19. S. Y. van der Werf, "Ray tracing and refraction in the modified US1976 atmosphere," Appl. Opt. 42, 354-366 (2003). [CrossRef] [PubMed]
  20. S. Khromov and L. Mamontova, Meteorological Handbook (Gidrometeoizdat, 1963).
  21. U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office, 1976).
  22. U.S. Standard Atmosphere, 1976, as published by NOAA, NASA, and USAF, http://scipp.ucsc.edu/outreach/balloon/atmos/1976%20Standard%20Atmosphere.htm.
  23. "Properties of the U.S. Standard Atmosphere 1976" (2005), http://www.pdas.com/atmos.htm.
  24. M. J. Mahoney, "A Brief Note on Standard/Reference Atmospheres" (2005), http://mtp.jpl.nasa.gov/notes/altitude/ReferenceAtmospheres.html.
  25. A. T. Young, Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1221, USA (personal communication, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited