OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 3 — Jan. 20, 2007
  • pp: 405–412

Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers

Markus Klein, Magnus Andersson, Ove Axner, and Erik Fällman  »View Author Affiliations

Applied Optics, Vol. 46, Issue 3, pp. 405-412 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-resolution long-time force measurements by optical tweezers are often limited by low- frequency ( 1 / f ) noise. A dual-trap technique is presented that can reduce such noise in the force signal. It incorporates a second trap (a reference trap) that probes the noise in the system and it is based upon the assumption that the low-frequency parts of the noise from the two traps are correlated. A subtraction of the low-frequency signal from the reference trap from the signal from the force measuring trap will therefore yield a net signal that is significantly less influenced by noise. It is shown that this dual-trap technique can reduce the noise in the force signal up to 60% depending on detection bandwidth.

© 2007 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 4, 2006
Revised Manuscript: September 14, 2006
Manuscript Accepted: September 16, 2006
Published: January 4, 2007

Virtual Issues
Vol. 2, Iss. 2 Virtual Journal for Biomedical Optics

Markus Klein, Magnus Andersson, Ove Axner, and Erik Fällman, "Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers," Appl. Opt. 46, 405-412 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  2. C. Bustamante, J. C. Macosko, and G. J. L. Wuite, "Grabbing the cat by the tail: manipulating molecules one by one," Nat. Rev. Mol. Cell Biol. 1, 130-136 (2000). [CrossRef]
  3. C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, "Single-molecule studies of DNA mechanics," Curr. Opin. Struct. Biol. 10, 279-285 (2000). [CrossRef] [PubMed]
  4. A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, "Force spectroscopy of molecular systems--Single molecule spectroscopy of polymers and biomolecules," Angew. Chem., Int. Ed. 39, 3213-3237 (2000).
  5. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  6. W. Denk and W. W. Watt, "Optical measurement of picometer displacements of transparent microscopic objects," Appl. Opt. 29, 2382-2391 (1990). [CrossRef] [PubMed]
  7. K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer-resolution position sensing," IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  8. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999). [CrossRef] [PubMed]
  9. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, "Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy," Nature 397, 50-53 (1999). [CrossRef] [PubMed]
  10. E. Evans and K. Ritchie, "Dynamic strength of molecular adhesion bonds," Biophys. J. 72, 1541-1555 (1997). [CrossRef] [PubMed]
  11. E. Evans, "Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy," Faraday Discuss. 111, 1-16 (1999). [CrossRef]
  12. E. Evans, "Probing the relation between force lifetime and chemistry in single molecular bonds," Annu. Rev. Biophys. Biomol. Struct . 30, 105-128 (2001). [CrossRef] [PubMed]
  13. U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, "Unzipping DNA with optical tweezers: high sequence sensitivity and force flips," Biophys. J. 82, 1537-1553 (2002). [CrossRef] [PubMed]
  14. J. Jass, S. Schedin, E. Fällman, J. Ohlsson, U. Nilsson, B. E. Uhlin, and O. Axner, "Physical properties of Escherichia coli P pili measured by optical tweezers," Biophys. J. 87, 4271-4283 (2004). [CrossRef] [PubMed]
  15. E. Fällman, S. Schedin, J. Jass, B. E. Uhlin, and O. Axner, "The unfolding of the P pili quaternary structure by stretching is reversible, not plastic," EMBO Rep. 6, 52-56 (2005). [CrossRef]
  16. M. Andersson, E. Fällman, B. E. Uhlin, and O. Axner, "A sticky chain model of the elongation of Escherichia coli P pili under strain," Biophys. J. 90, 1521-1534 (2006). [CrossRef]
  17. M. Andersson, E. Fällman, B. E. Uhlin, and O. Axner, "Force measuring optical tweezers system for long time measurements of Pili stability," in Proc. SPIE 6088, 286-295 (2006).
  18. L. Nugent-Glandorf and T. T. Perkins, "Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection," Opt. Lett. 29, 2611-2613 (2004). [CrossRef] [PubMed]
  19. J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, "Backtracking by single RNA polymerase molecules observed at near-base-pair resolution," Nature 426, 684-687 (2003). [CrossRef] [PubMed]
  20. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005). [CrossRef] [PubMed]
  21. J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, "Differential detection of dual traps improves the spatial resolution of optical tweezers," Proc. Natl. Acad. Sci. U.S.A. 103, 9006-9011 (2006). [CrossRef] [PubMed]
  22. E. Fällman, S. Schedin, J. Jass, M. Andersson, B. E. Uhlin, and O. Axner, "Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion," Biosens. Bioelectron. 19, 1429-1437 (2004). [CrossRef] [PubMed]
  23. E. Fällman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107-2113 (1997). [CrossRef] [PubMed]
  24. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, "Characterization of photodamage to Escherichia coli in optical traps," Biophys. J. 77, 2856-2863 (1999). [CrossRef] [PubMed]
  25. J. C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cross correlations between two particles in an external potential," Phys. Rev. Lett. 82, 2211-2214 (1999). [CrossRef]
  26. G. Leitz, E. Fällman, S. Tuck, and O. Axner, "Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence," Biophys. J. 82, 2224-2231 (2002). [CrossRef] [PubMed]
  27. F. Gittes and C. F. Schmidt, "Thermal noise limitations on micromechanical experiments," Eur. Biophys. J. 27, 75-81 (1998). [CrossRef]
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C--The Art of Scientific Computing (Cambridge U. Press, 1992).
  29. S. B. Smith, Y. J. Cui, and C. Bustamante, "Optical-trap force transducer that operates by direct measurement of light momentum," Meth. Enzymol. 361, 134-162 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited