OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 31 — Nov. 1, 2007
  • pp: 7590–7593

Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section

Yong Yang, Yun-Feng Xiao, Chun-Hua Dong, Jin-Ming Cui, Zheng-Fu Han, Guo-Dong Li, and Guang-Can Guo  »View Author Affiliations

Applied Optics, Vol. 46, Issue 31, pp. 7590-7593 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Whispering-gallery modes (WGMs) in a zeolite cylinder have been effectively coupled with a low-loss fiber taper. The fiber transmission spectrum directly shows the WGM distribution, which agrees well with the theoretical prediction based on geometric optics. Due to other scattering and absorbing mechanisms, the measured quality factors of the WGMs are limited to approximately 800. This result shows that the fiber taper provides a powerful tool for coupling WGMs of a zeolite cylinder, and this taper-coupled zeolite can be a potential microcavity system for the cavity quantum electrodynamics and the microlaser.

© 2007 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Original Manuscript: August 28, 2007
Revised Manuscript: September 12, 2007
Manuscript Accepted: September 13, 2007
Published: October 22, 2007

Yong Yang, Yun-Feng Xiao, Chun-Hua Dong, Jin-Ming Cui, Zheng-Fu Han, Guo-Dong Li, and Guang-Can Guo, "Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section," Appl. Opt. 46, 7590-7593 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  2. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  3. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. Lett. 54, 1777-1780 (1996).
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  5. T. Bilici, S. Isci, A. Kurt, and A. Serpenguzel, "Microsphere-based channel dropping filter with an integrated photodetector," IEEE Photon Technol. Lett. 16, 476-478 (2004). [CrossRef]
  6. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery Modes-part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef] [PubMed]
  7. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, "Realizing quantum controlled phase flip through cavity QED," Phys. Rev. A 70, 042314 (2004). [CrossRef]
  8. Y. F. Xiao, Z. F. Han, and G. C. Guo, "Quantum computation without strict strong coupling on a silicon chip," Phys. Rev. A 73, 052324 (2006). [CrossRef]
  9. W. Yao, R. B. Liu, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett. 95, 030504 (2005). [CrossRef] [PubMed]
  10. H. M. Tzeng, K. E. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984). [CrossRef] [PubMed]
  11. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802 (2006). [CrossRef]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  13. U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, "Zeolite-dye microlasers," Phys. Rev. Lett. 81, 4628-4631 (1998). [CrossRef]
  14. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonator with hexagonal cross section," Phys. Rev. Lett. 93, 103903 (2004). [CrossRef] [PubMed]
  15. C. W. Chen and Y. F. Chen, "Whispering gallery modes in highly hexagonal symmetric structures of SBA-1 mesoporous silica," Appl. Phys. Lett. 90, 071104 (2007). [CrossRef] [PubMed]
  16. J. V. Smith, "Topochemistry of zeolites and related materials. 1. Topology and geometry," Chem. Rev. 88, 149-182 (1988). [CrossRef] [PubMed]
  17. Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, "Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal," Phys. Rev. Lett. 87, 127401 (2001). [CrossRef] [PubMed]
  18. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  19. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005). [CrossRef]
  20. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004). [CrossRef]
  21. J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Phys. Rev. A 67, 023807 (2003). [CrossRef]
  22. I. Braun, G. Ihlein, F. Laeri, J. U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiss, and D. Wöhrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B 70, 335-343 (2000). [CrossRef]
  23. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A 5, 53-60 (2003). [CrossRef]
  24. T. Nobis and M. Grundmann, "Low-order whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited