OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 31 — Nov. 1, 2007
  • pp: 7693–7696

Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3

Yunlin Chen, S. W. Liu, Dongdong Wang, Tianlin Chen, and Min Xiao  »View Author Affiliations


Applied Optics, Vol. 46, Issue 31, pp. 7693-7696 (2007)
http://dx.doi.org/10.1364/AO.46.007693


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical nonlinearities of periodically poled LiNbO 3 crystals were investigated by the single beam Z-scan technique with a continuous wave (cw) laser beam at 532   nm . The nonlinear optical absorption coefficient and refractive index change are determined to be 8.1 × 10 6 cm / W and 2.6 × 10 4 at 0.5 MW / cm 2 light intensity, respectively. Both sign and magnitude of the measured refractive nonlinearity are considerably different from the Z-scan results in congruent LiNbO 3 . The nonlinearities in the periodically poled LiNbO 3 induced by 532   nm continuous waves are believed to be mainly due to the photorefractive effect.

© 2007 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 24, 2007
Manuscript Accepted: September 12, 2007
Published: October 25, 2007

Citation
Yunlin Chen, S. W. Liu, Dongdong Wang, Tianlin Chen, and Min Xiao, "Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3," Appl. Opt. 46, 7693-7696 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-31-7693


Sort:  Year  |  Journal  |  Reset  

References

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  2. N. G. Broderick, R. G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. Hanna, "Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  3. M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000). [CrossRef]
  4. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, and K. Kitamura, "Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy," Appl. Phys. Lett. 81, 4401-4403 (2002). [CrossRef]
  5. S. Odoulov, S. T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phy. Rev. Lett. 84, 3294-3297 (2000). [CrossRef]
  6. B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, "Photorefractive nonlinearity of periodically poled ferroelectrics," J. Opt. Soc. Am. B 14, 2641-2649 (1997). [CrossRef]
  7. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A: Solids Surf. A56, 103-108 (1993).
  8. M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, "Optical damage resistance in undoped LiNbO3 crystals," Opt. Mater. 16, 111-117 (2001). [CrossRef]
  9. M. Sheik-Bahae, D. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  10. F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, "Beam waist changes in lithium niobate during Z-scan measurement," Appl. Phys. Lett. 78, 1373-1375 (1995).
  11. H. Li, F. Zhou, X. J. Zhang, and W. Ji, "Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption," Appl. Phys. B 64, 659-662 (1997). [CrossRef]
  12. L. Pálfalvi, G. Almási, J. Hebling, A. Péter, and K. Polgár, "Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3," Appl. Phys. Lett. 80, 2245-2247 (2002). [CrossRef]
  13. Y. L. Chen, W. G. Yan, D. D. Wang, S. L. Chen, and G. Y. Zhang, "Submicron domain inversion in Mg-doped LiNbO3 using backswitched poling with short voltage pulses," Appl. Phys. Lett. 90, 062908-062910 (2007). [CrossRef]
  14. L. Pálfalvi, J. Hebling, G. Almási, A. Péter, and K. Polgár, "Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects," J. Opt. A: Pure Appl. Opt. 5, S280-S83 (2003). [CrossRef]
  15. J. A. Hermann and R. G. McDuff, "Analysis of spatial scanning with thick optically nonlinear media," J. Opt. Soc. Am. B 10, 2056-2064 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited