OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 33 — Nov. 20, 2007
  • pp: 8095–8103

Complications to optical measurements using a laser with an unstable resonator: a case study on laser-induced incandescence of soot

Mark A. Dansson, Matthew Boisselle, Mark A. Linne, and Hope A. Michelsen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 33, pp. 8095-8103 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporal behavior of pulses from a Q-switched Nd:YAG laser with an unstable resonator can vary significantly with radial position in the beam. Our laser provides pulses with position-dependent durations spanning 8 11.5   ns at 1064   nm and 7 10   ns at 532   nm . Pulses emerge first and have the longest duration at the center of the beam; they are shorter (by up to 4 ns) and increasingly delayed (by up to 10 ns) with increasing radial distance from the center. This behavior can have a dramatic effect on time-sensitive experiments, such as laser-induced incandescence of soot, if not taken into account.

© Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.3410) Lasers and laser optics : Laser resonators
(290.5820) Scattering : Scattering measurements
(300.6360) Spectroscopy : Spectroscopy, laser
(350.4990) Other areas of optics : Particles

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 27, 2007
Revised Manuscript: October 17, 2007
Manuscript Accepted: October 22, 2007
Published: November 19, 2007

Mark A. Dansson, Matthew Boisselle, Mark A. Linne, and Hope A. Michelsen, "Complications to optical measurements using a laser with an unstable resonator: a case study on laser-induced incandescence of soot," Appl. Opt. 46, 8095-8103 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003). [CrossRef]
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. K. J. Snell, N. McCarthy, and M. Piché, "Single transverse mode oscillation from an unstable resonator Nd:YAG laser using a variable reflectivity mirror," Opt. Commun. 65, 377-382 (1988). [CrossRef]
  4. N. McCarthy and P. Lavigne, "Large-size Gaussian mode in unstable resonators using Gaussian mirrors," Opt. Lett. 10, 553-555 (1985). [CrossRef] [PubMed]
  5. S. De Silvestri, V. Magni, O. Svelto, and G. Valentini, "Lasers with super-Gaussian mirrors," IEEE J. Quantum Electron. 26, 1500-1509 (1990). [CrossRef]
  6. A. Caprara and G. C. Reali, "Time varying M2 in Q-switched lasers," Opt. Quantum Electron. 24, S1001-S1009 (1992). [CrossRef]
  7. A. Caprara and G. C. Reali, "Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser," Opt. Lett. 17, 414-416 (1992). [CrossRef] [PubMed]
  8. J. N. Forkey, W. R. Lempert, and R. B. Miles, "Observation of a 100-MHz frequency variation across the output of a frequency-doubled injection-seeded unstable-resonator Q-switched Nd:YAG laser," Opt. Lett. 22, 230-232 (1997). [CrossRef] [PubMed]
  9. J. E. Dec, A. O. zur Loye, and D. L. Siebers, "Soot distribution in a D. I. diesel engine using 2-D laser-induced incandescence imaging," SAE Trans. 100, 277-288 (1991).
  10. J. E. Dec, "Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity," SAE Trans. 101, 101-112 (1992).
  11. C. Espey and J. E. Dec, "Diesel engine combustion studies in a newly designed optical-access engine using high speed visualization and 2-D laser imaging," SAE Trans. 102, 703-723 (1993).
  12. J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," Proc. SAE , SAE Paper No. 932650 (1993).
  13. J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," SAE Trans. 103, 1773-1788 (1994).
  14. K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," SAE Trans. 108, 574-586 (1999).
  15. D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, and Ö. L. Gülder, "Particulate matter measurements in a diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure," SAE Trans. 108(4), 2156-2164 (1999).
  16. D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo, "In situ real time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence," SAE Trans. 109, 1914-1925 (2000).
  17. P. O. Witze, "Real-time measurement of the volatile fraction of diesel particulate matter using laser-induced vaporization with elastic scattering (LIVES)," SAE Trans. 111, 661-672 (2002).
  18. N. P. Tait and D. A. Greenhalgh, "PLIF imaging of fuel fraction in practical devices and LII imaging of soot," Ber. Bunsenges. Phys. Chem. 97, 1619-1625 (1993).
  19. F. Cignoli, S. Benecchi, and G. Zizak, "Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames," Appl. Opt. 33, 5778-5782 (1994). [CrossRef] [PubMed]
  20. R. L. Vander Wal and K. J. Weiland, "Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction," Appl. Phys. B 59, 445-452 (1994). [CrossRef]
  21. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995). [CrossRef] [PubMed]
  22. C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996). [CrossRef]
  23. H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, "Statistical analysis of soot volume fractions, particle number densities and particle radii in a turbulent diffusion flame," Combust. Sci. Technol. 149, 115-134 (1999). [CrossRef]
  24. D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000). [CrossRef]
  25. B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).
  26. T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002). [CrossRef]
  27. M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, "Soot formation in laminar diffusion flames," Combust. Flame 143, 613-628 (2005). [CrossRef]
  28. J. P. Schwarz, R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbehshti, D. G. Baumgardner, G. L. Kok, S. H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Kärcher, J. G. Slowik, K. H. Rosenlof, T. L. Thompson, A. O. Langford, M. Loewenstein, and K. C. Aikin, "Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere," J. Geophys. Res. 111, D16207 (2006). [CrossRef]
  29. S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995). [CrossRef] [PubMed]
  30. S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998). [CrossRef]
  31. B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997). [CrossRef] [PubMed]
  32. P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol. Sci. 27, 95-104 (1996). [CrossRef]
  33. A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999). [CrossRef]
  34. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000). [CrossRef]
  35. C. Allouis, F. Rosano, F. Beretta, and A. D'Alessio, "A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence," Meas. Sci. Technol. 13, 401-410 (2002). [CrossRef]
  36. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003). [CrossRef] [PubMed]
  37. V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005). [CrossRef]
  38. B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, "Two-color time-resolved LII applied to soot particle sizing in the cylinder of a diesel engine," Combust. Flame 147, 79-92 (2006). [CrossRef]
  39. R. J. Santoro and C. R. Shaddix, "Laser-Induced Incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus, and J. B. Jeffries, eds. (Taylor and Francis, 2002), pp. 252-286.
  40. C. Schulz, B. F. Kock, M. Hofmann, H. A. Michelsen, S. Will, B. Bougie, R. Suntz, and G. J. Smallwood, "Laser-induced incandescence: recent trends and current questions," Appl. Phys. B 83, 333-354 (2006). [CrossRef]
  41. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, "Soot particle measurements in diffusion flames," Combust. Flame 51, 203-218 (1983). [CrossRef]
  42. R. J. Santoro and J. H. Miller, "Soot particle formation in laminar diffusion flames," Langmuir 3, 244-254 (1987). [CrossRef]
  43. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994). [CrossRef]
  44. H. A. Michelsen, "Laser-induced incandescence of flame-generated soot on a picosecond time scale," Appl. Phys. B 83, 443-448 (2006). [CrossRef]
  45. R. L. Vander Wal, "Laser-induced incandescence: detection issues," Appl. Opt. 35, 6548-6559 (1996). [CrossRef] [PubMed]
  46. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J. F. Pauwels, and P. Desgroux, "Two-color laser-induced incandescence and cavity ring-down spectroscopy of sensitive and quantitative imaging of soot and PAHs in flames," Appl. Phys. B 78, 485-492 (2004). [CrossRef]
  47. T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, and J. R. Gord, "Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames," Appl. Opt. 44, 445-454 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited