OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 36 — Dec. 20, 2007
  • pp: 8553–8561

Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria

Willy Okullo, Taddeo Ssenyonga, Børge Hamre, Øyvind Frette, K. Sørensen, Jakob J. Stamnes, Andreas Steigen, and Knut Stamnes  »View Author Affiliations


Applied Optics, Vol. 46, Issue 36, pp. 8553-8561 (2007)
http://dx.doi.org/10.1364/AO.46.008553


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lake Victoria, Africa's largest freshwater lake, suffers greatly from negative changes in biomass of species of fish and also from severe eutrophication. The continuing deterioration of Lake Victoria's ecological functions has great long-term consequences for the ecosystem benefits it provides to the countries bordering its shores. However, knowledge about temporal and spatial variations of optical properties and how they relate to lake constituents is important for a number of reasons such as remote sensing, modeling of underwater light fields, and long-term monitoring of lake waters. Based on statistical analysis of data from optical measurements taken during half a year of weekly cruises in Murchison Bay, Lake Victoria, we present a three-component model for the absorption and a two-component model for the scattering of light in the UV and the visible regions of the solar spectrum along with tests of their ranges of validity. The three-component input to the model for absorption is the chlorophyll-a (Chl-a), total suspended materials concentrations, and yellow substance absorption, while the two-component input to the model for scattering is the Chl-a concentration and total suspended materials.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5820) Scattering : Scattering measurements
(300.1030) Spectroscopy : Absorption

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 19, 2007
Revised Manuscript: October 19, 2007
Manuscript Accepted: October 22, 2007
Published: December 13, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Willy Okullo, Taddeo Ssenyonga, Børge Hamre, Øyvind Frette, K. Sørensen, Jakob J. Stamnes, Andreas Steigen, and Knut Stamnes, "Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria," Appl. Opt. 46, 8553-8561 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-36-8553


Sort:  Year  |  Journal  |  Reset  

References

  1. M. J. Ntiba, W. M. Kudoja, and C. T. Mukasa, "Management issues in the Lake Victoria watershed," Lakes and Reservoirs: Research and Management 6, 211-216 (2001). [CrossRef]
  2. R. Ogutu-Ohwayo, R. E. Hecky, A. S. Cohen, and L. Kaufman, "Human impacts on the African Great, Lakes," Environ. Biol. Fishes 50, 117-131 (1997). [CrossRef]
  3. D. K. Branstrator, L. Mwebaza-Ndawula, and J. P. Montoya, "Resource-consumer relationships in Lake Victoria, East Africa," Hydrobiologia 493, 27-34 (2003). [CrossRef]
  4. D. Verschuren, T. C. Johnson, H. J. Kling, D. N. Edington, P. R. Leavitt, E. T. Brown, M. R. Talbot, and R. E. Hecky, "History and timing of human impact on Lake Victoria," Proc. R. Soc. London Ser. B 269, 289-294 (2002). [CrossRef]
  5. J. H. Wanink and J. J. Kashinde, "Short-term variations in pelagic photosynthesis demand well-timed sampling to monitor long-term limnological changes in Lake Victoria," Hydrobiologia 377, 177-181 (1998). [CrossRef]
  6. L. R. Ferber, S. N. Levine, A. Lini, and G. P. Livingston, "Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen?"Freshwater Biol. 49, 690-708 (2004). [CrossRef]
  7. H. B. O. Lung'ayia, A. M'Harzi, M. Tackx, J. Gichuki, and J. J. Symoens, "Phytoplankton community structure and environment in the Kenyan waters of Lake Victoria," Freshwater Biol. 43, 529-543 (2000).
  8. S. L. Taylor, S. C. Roberts, C. J. Walsh, and B. E. Belinda E. Hatt, "Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management," Freshwater Biol. 49, 835-851 (2004). [CrossRef]
  9. R. E. Hecky, "The eutrophication of Lake Victoria," Verh. Int. Ver. Limnol. 25, 39-48 (1993).
  10. P. B. O. Ochumba and D. I. Kibaara, "Observations on blue-green algal blooms in the open waters of Lake Victoria, Kenya," Afr. J. Ecol. 27, 23-34 (1989). [CrossRef]
  11. M. Gophen, P. B. O. Ochumba, U. Pollingher, and L. S. Kaufman, "Nile perch (Lates niloticus) invasion in Lake Victoria (East Africa)," Verh. Int. Ver. Limnol. 25, 856-859 (1993).
  12. R. Mugidde, "The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda)," Verh. Int. Ver. Limnol. 25, 846-849 (1993).
  13. D. Aksnes and A. Utne, "A revised model of visual range in fish," Sarsia 82, 137-147 (1997).
  14. M. Skogen, E. Svendsen, J. Berntens, D. Aksnes, and K. Ulvertad, "Modelling the primary production in the North-sea using a coupled 3-dimensional physical-chemical-biological ocean model," Estuarine Coastal Shelf Sci. 41, 545-565 (1995). [CrossRef]
  15. H. Eilertsen and O. Holm-Hansen, "Effect of high latitude UV radition on phytoplankton and nekton modelled from field measurements by simple algorithms," Adv. Space Res. 19, 173-182 (2000).
  16. J. Fischer and R. Deorffer, "An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements," Polar Res. 7, 21-26 (1987).
  17. Ø. Frette, J. J. Stamnes, and K. Stamnes, "Optical remote sensing of marine constituents in coastal waters: a feasibility study," Appl. Opt. 37, 8318-8326 (1998). [CrossRef]
  18. Ø. Frette, S. Erga, J. J. Stamnes, and K. Stamnes, "Optical remote sensing of waters with vertical structure," Appl. Opt. 40, 1478-1487 (2001). [CrossRef]
  19. J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo study of the scattering error of a quartz reflective absorption tube," J. Atmos. Ocean. Technol. 18, 438-445 (2001). [CrossRef]
  20. S. W. Jeffrey, R. F. Mantoura, and S. W. Wright, "Phytoplankton pigments in oceanography," in Monographs on Oceanographic Methodology (SCOR/UNESCO, 1997), Vol. 10.
  21. R. Doerffer, "Protocols for the validation of MERIS water products," ESA Doc. PO-TN-MEL-GS-0043, GKSS (European Space Agency, 2002).
  22. N. Jerlov, Optical Oceanography (Elsevier, 1968).
  23. W. H. Flaig, B. C. R. Beutelspacher, and R. Reitz, "Chemical composition and physical properties of humic substances," in Soil Components: Organic Compounds, J. E. Gieseking, ed. (Springer, 1975), Vol. 1, pp. 1-21.
  24. E. T. Gjessing, Physical and Chemical Characteristics of Aquatic Humus (Ann Arbor Science, 1976).
  25. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge, 1983).
  26. B. Hamre, Ø. Frette, S. R. Erga, J. J. Stamnes, and K. Stamnes, "Parameterization and analysis of the optical absorption and scattering coefficients in a Western Norwegian fjord-A case II water study," Appl. Opt. 42, 883-892 (2003). [CrossRef] [PubMed]
  27. E. H. S. Van-Duin, G. Blom, F. J. Los, R. Maffione, C. F. Zimmerman, R. Cerco, M. Dortch, and E. P. H. Best, "Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth," Hydrobiologia 444, 25-42 (2001). [CrossRef]
  28. T. Petzold, "Volume scattering functions for selected ocean waters," SIO Ref. 72-78 (Scripps Institution of Oceanography, 1972).
  29. Z. Jin and K. Stamnes, "Radiation transfer in nonuniformly refracting layered media: atmosphere-ocean system," Appl. Opt. 33, 431-442 (1994). [CrossRef] [PubMed]
  30. G. K. Bhattacharya and R. A. Johnson, Statistical Concepts and Methods (Wiley, 1977).
  31. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  32. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  33. A. Bricaud, A. Morel, M. Babih, K. Allali, and H. Claustre, "Variation in light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, 31033-31044 (1998). [CrossRef]
  34. C. Duarte, S. Augusti, and M. Satta, "Partioning particulate light absorption: a budget for a Mediterranean bay," Limnol. Oceanogr. 43, 236-244 (1998). [CrossRef]
  35. E. Boss, W. Pegau, W. Gardner, J. Zaneveld, A. Barnard, M. Twardowski, G. Chang, and T. Dickey, "Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf," J. Geophys. Res. 106, 9509-9516 (2001). [CrossRef]
  36. A. Morel, Y. Ann, F. Partensky, D. Vaulot, and H. Claustre, "Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation," J. Mar. Res. 51, 617-649 (1993). [CrossRef]
  37. J. T. O. Kirk, "Yellow substance (gelbstoff) and its contribution to the attenuation of photosynthetically active radiation in some inland and coastal Southeastern Australian waters," Aus. J. Mar. Freshwater Res. 27, 61-71 (1976). [CrossRef]
  38. J. T. O. Kirk, "Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal Southeastern Australian waters," Aus. J. Mar. Freshwater Res. 28, 9-21 (1977). [CrossRef]
  39. J. T. O. Kirk, "Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland and coastal Southeastern Australian waters," Aus. J. Mar. Freshwater Res. 31, 287-296 (1980). [CrossRef]
  40. P. Bukaveckas and M. Robbins-Forbest, "Role of dissolved organic carbon in the attenuation of photosynthetically active radiation in Adirondack lakes," Freshwater Biol. 43, 339-354 (2000). [CrossRef]
  41. J. T. O. Kirk, Light and Photosynethesis in Aquatic Ecosystem (Cambrigde, 1994). [CrossRef]
  42. J. F. Talling, "Generalized and specialized features of phytoplankton as a form of photosynthetic cover," in Prediction and Measurement of Photosynthetic Productivity (Wageningen: Pudoc, 1970), pp. 431-445.
  43. S. W. Effler, R. K. Gelda, J. A. Bloomfield, S. O. Quinn, and D. L. Johnson, "Modeling the effects of tripton on water clarity: Lake Champlain," J. Water Resour. Plan. Manage. 127, 224-234 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited