OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 36 — Dec. 20, 2007
  • pp: 8583–8590

Ultrashort intense-field optical vortices produced with laser-etched mirrors

James Strohaber, Timothy D. Scarborough, and Cornelis J. G. J. Uiterwaal  »View Author Affiliations


Applied Optics, Vol. 46, Issue 36, pp. 8583-8590 (2007)
http://dx.doi.org/10.1364/AO.46.008583


View Full Text Article

Enhanced HTML    Acrobat PDF (2915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a simple and practical method to create ultrashort intense optical vortices for applications involving high-intensity lasers. Our method utilizes femtosecond laser pulses to laser etch grating lines into laser-quality gold mirrors. These grating lines holographically encode an optical vortex. We derive mathematical equations for each individual grating line to be etched, for any desired (integer) topological charge. We investigate the smoothness of the etched grooves. We show that they are smooth enough to produce optical vortices with an intensity that is only a few percent lower than in the ideal case. We demonstrate that the etched gratings can be used in a folded version of our 2 f 2 f setup [Opt. Express 19, 7599 (2005)] to compensate angular dispersion. Finally, we show that the etched gratings withstand intensities of up to 10 12 W / cm 2 .

© 2007 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1760) Holography : Computer holography
(140.3300) Lasers and laser optics : Laser beam shaping
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 26, 2007
Manuscript Accepted: October 30, 2007
Published: December 13, 2007

Citation
James Strohaber, Timothy D. Scarborough, and Cornelis J. G. J. Uiterwaal, "Ultrashort intense-field optical vortices produced with laser-etched mirrors," Appl. Opt. 46, 8583-8590 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-36-8583


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers," Rep. Prog. Phys. 60, 389-486 (1997). [CrossRef]
  2. S. L. Chin and P. Lambropoulos, eds., Multiphoton Ionization of Atoms (Academic, 1984).
  3. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London Ser. A 336, 165-190 (1974). [CrossRef]
  4. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1565 (1966). [CrossRef] [PubMed]
  5. L. Allen, S. M. Barnett, and M. J. Padgett, eds., Optical Angular Momentum (Institute of Physics, 2003). [CrossRef]
  6. A. E. Siegman, Lasers (University Science Books, 1986).
  7. M. Vasnetsov and K. Staliunas, eds., Optical Vortices (Nova Science, 1999).
  8. M. A. Bandres and J. C. Gutiérrez-Vega, "Ince-Gaussian beams," Opt. Lett. 29, 144-146 (2004). [CrossRef] [PubMed]
  9. M. A. Bandres and J. C. Gutiérrez-Vega, "Ince-Gaussian modes of the paraxial wave equation and stable resonators," J. Opt. Soc. Am. A 21, 873-880 (2004). [CrossRef]
  10. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, "Observation of Ince-Gaussian modes in stable resonators," Opt. Lett. 29, 1870-1872 (2004). [CrossRef] [PubMed]
  11. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, "Generation of helical Ince-Gaussian beams with a liquid-crystal display," Opt. Lett. 31, 649-651 (2006). [CrossRef] [PubMed]
  12. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, "Laguerre-Gaussian beam generation with a multilevel spiral phase plate for high intensity laser pulses," Opt. Express 15, 3548-3553 (2004). [CrossRef]
  13. K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, and L. S. Zhang, "Generation of femtosecond optical vortices using a single refractive optical element," Appl. Phys. Lett. 88, 091103 (2006). [CrossRef]
  14. W. C. Cheong, W. M. Lee, X.-C. Yuan, and L. S. Zhang, "Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation," Appl. Phys. Lett. 85, 5784-5786 (2004). [CrossRef]
  15. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, "Creation of optical vortices in femtosecond pulses," Opt. Express 19, 7599-7608 (2005). [CrossRef]
  16. J. Strohaber, C. Petersen, and C. J. G. J. Uiterwaal, "Efficient angular dispersion compensation in holographic generation of intense ultrashort paraxial beam modes," Opt. Lett. 32, 2387-2389 (2007). [CrossRef] [PubMed]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  18. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, "Vortices in femtosecond laser fields," Opt. Lett. 29, 1942-1944 (2004). [CrossRef] [PubMed]
  19. J. F. James, A Student's Guide to Fourier Transforms (Cambridge U. Press, 1995).
  20. M. V. Berry, "Optical vortices evolving from helicoidal integer and fractional phase steps," J. Opt. A 6, 259-268 (2004). [CrossRef]
  21. J. Leach, E. Yao, and M. J. Padgett, "Observation of the vortex structure of a noninteger vortex beam," New J. Phys. 6, 71.1-71.8 (2004). [CrossRef]
  22. J. Leach and M. J. Padgett, "Observation of chromatic effects near a white-light vortex," New J. Phys. 5, 154.1-154.7 (2003). [CrossRef]
  23. J. Flamand, G. de Villèle, A. Cotel, B. Touzet, and S. Kane, "New MLD gratings adapted for tiling in petawatt-class lasers," J. Phys. IV 133, 601-605 (2006).
  24. M.-S. L. Lee, J.-C. Rodier, P. Lalanne, P. Legagneux, P. Gallais, C. Germain, and J. Rollin, "Blazed-binary diffractive gratings with antireflection coating for improved operation at 10.6 μm," Opt. Eng. 43, 2583-2588 (2004). [CrossRef]
  25. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, "Generation of achromatic Bessel beams using a compensated spatial light modulator," Opt. Express 14, 5581-5587 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited