OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 611–619

Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers

John R. Tucker, Aleksandar D. Rakić, Christopher J. O'Brien, and Andrei V. Zvyagin  »View Author Affiliations

Applied Optics, Vol. 46, Issue 4, pp. 611-619 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(280.3400) Remote sensing and sensors : Laser range finder
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote Sensing

Original Manuscript: May 8, 2006
Manuscript Accepted: September 22, 2006

John R. Tucker, Aleksandar D. Rakić, Christopher J. O'Brien, and Andrei V. Zvyagin, "Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers," Appl. Opt. 46, 611-619 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
  2. K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995).
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  4. S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).
  5. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
  6. G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984).
  7. S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
  8. G. Beheim and K. Fritsch, "Range finding using frequency-modulated laser diode," Appl. Opt. 25, 1439-1442 (1986). [PubMed]
  9. J. H. Churnside, "Laser Doppler velocimetry by modulating a CO2 laser with backscattered light," Appl. Opt. 23, 61-66 (1984). [PubMed]
  10. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. 40, 95-99 (2001).
  11. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
  12. K. Mito, H. Ikeda, M. Sumi, and S. Shinohara, "Self-mixing effect on the semiconductor laser Doppler method for blood flow measurement," Med. Biol. Eng. Comput. 31, 308-310 (1993). [PubMed]
  13. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
  14. E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
  15. Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
  16. G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
  17. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
  18. P. J. de Groot, "Range-dependent optical feedback effects on the multimode spectrum of laser diodes," J. Mod. Opt. 37, 1199-1214 (1990).
  19. H. Kakiuchida and J. Ohtsubo, "Characteristics of a semiconductor laser with external feedback," IEEE J. Quantum Electron. 30, 2087-2097 (1994).
  20. Y. Yu and J. Yao, "View for the development of theory on the self-mixing interference and general model of the displacement measurement," in Advanced Materials and Devices for Sensing and Imaging, J. Yao and Y. Ishii, eds., Proc. SPIE 4919, 235-241 (2002).
  21. L. Lv, H. Gui, J. Xie, T. Zhao, X. Chen, A. Wang, F. Li, D. He, J. Xu, and H. Ming, "Effect of external cavity length on self-mixing signals in a multilongitudinal-mode Fabry-Perot laser diode," Appl. Opt. 44, 568-571 (2005). [PubMed]
  22. J. R. Tucker, Y. L. Leng, and A. D. Rakic, "Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser," in Proceedings of the 2002 Conference on Optoelectronic and Microelectronic Materials and Devices Proceedings (IEEE, 2002), pp. 583-586. [PubMed]
  23. K. Bertling, J. R. Tucker, and A. D. Rakic, "Optimum injection current waveform for a laser rangefinder based on the self-mixing effect," in Photonics: Design, Technology, and Packaging, C. Jagadish, K. D. Choquette, B. J. Eggleton, B. D. Nener, and K. A. Nugent, eds., Proc. SPIE 5277, 334-345 (2004).
  24. C. Gorecki and D. Heinis, "A miniaturized SNOM sensor based on the optical feedback inside the VCSEL cavity," in Optical Micro- and Nanometrology in Manufacturing Technology, C. Gorecki and A. K. Asundi, eds., Proc. SPIE 5458, 183-187 (2004).
  25. T. Maier and E. Gornik, "Integrated sensor chip for interferometric displacement measurements," Electron. Lett. 36, 792-794 (2000).
  26. F. Vogel and B. Toulouse, "A low-cost medium-resolution rangefinder based on the self-mixing effect in a VCSEL," IEEE Trans. Instrum. Meas. 54, 428-431 (2005).
  27. E. M. Strzelecka, G. B. Thompson, G. D. Robinson, M. G. Peters, B. J. Thibeault, M. Mondry, V. Jayaraman, F. H. Peters, and L. A. Coldren, "Monolithic integration of refractive lenses with vertical cavity lasers and detectors for optical interconnections," in Optoelectronic Packaging, M. R. Feldman and Y.-C. Lee, eds., Proc. SPIE 2691, 43-53 (1996).
  28. R. Wang, A. D. Rakic, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002). [PubMed]
  29. F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakic, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005). [PubMed]
  30. P. J. de Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988). [PubMed]
  31. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992). [PubMed]
  32. R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, "57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs," Electron. Lett. 33, 330-331 (1997).
  33. K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, "Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency," Electron. Lett. 31, 208-209 (1995).
  34. M. Grabherr, R. Jager, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, "Efficient single-mode oxide-confined GaAs VCSEL's emitting in the 850-nm wavelength regime," IEEE Photon. Technol. Lett. 9, 1304-1306 (1997).
  35. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, "High-bit-rate data transmission with short-wavelength oxidized VCSEL's, toward bias-free operation," IEEE J. Sel. Top. Quantum Electron. 3, 396-404 (1997).
  36. T. H. Oh, M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Cavity-induced antiguiding in a selectively oxidized vertical-cavity surface-emitting laser," IEEE Photon. Technol. Lett. 10, 12-14 (1998).
  37. T. H. Oh, O. B. Shchekin, and D. G. Deppe, "Single-mode operation in an antiguided vertical-cavity surface-emitting laser using a low-temperature grown AlGaAs dielectric aperture," IEEE Photon. Technol. Lett. 10, 1064-1066 (1998).
  38. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley, 2003).
  39. R. Michalzik and K. J. Ebeling, "Operating principles of VCSELs," in Vertical-Cavity Surface-Emitting Laser Devices, H.E.Li and K.Iga, eds. (Springer, 2003), pp. 53-98.
  40. R. Michalzik and K. J. Ebeling, "Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes," IEEE J. Quantum Electron. 31, 1371-1379 (1995).
  41. G. Giuliani and S. Donati, "Laser interferometry," in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, D.M.Kane and K.A.Shore, eds. (Wiley, 2005), pp. 217-256.
  42. J. J. Dudley, D. L. Crawford, and J. E. Bowers, "Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices," IEEE Photon. Technol. Lett. 4, 311-314 (1992).
  43. W. Nakwaski and R. P. Sarzala, "Transverse modes in gain-guided vertical-cavity surface-emitting lasers," Opt. Commun. 148, 63-69 (1998).
  44. C. Degen, I. Fischer, and W. Elsasser, "Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects," Opt. Express 5, 38-47 (1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited