OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 4 — Feb. 1, 2007
  • pp: 620–627

Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy

Christopher Ramos and Paul J. Dagdigian  »View Author Affiliations

Applied Optics, Vol. 46, Issue 4, pp. 620-627 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detection of vapors of dinitrobenzenes and dinitrotoluenes by UV cavity ringdown spectroscopy (CRDS) was investigated. Absorption cross sections at 248 n m were estimated by measurements on saturated vapors and compared with solution-phase values. The computed subparts per 109 detection sensitivity with no effort at preconcentration was demonstrated through measurements on diluted flows. The factors affecting measurements on 1 atm total pressure were considered, and it was demonstrated that Rayleigh scattering by air will reduce the detection sensitivity by 5%–10%. The UV absorption spectra of these compounds are broad, resulting in a relatively poor selectivity for single-wavelength measurements with the UV CRDS technique.

© 2007 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Original Manuscript: June 19, 2006
Revised Manuscript: September 15, 2006
Manuscript Accepted: September 26, 2006

Christopher Ramos and Paul J. Dagdigian, "Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy," Appl. Opt. 46, 620-627 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. I. Steinfeld and J. Wormhoudt, "Explosives detection: a challenge for physical chemistry," Annu. Rev. Phys. Chem. 49, 203-232 (1998). [CrossRef]
  2. D. S. Moore, "Instrumentation for trace detection of high explosives," Rev. Sci. Instrum. 75, 2499-2512 (2004). [CrossRef]
  3. C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, Jr., A. W. Miziolek, R. A. Walters, and A. L. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006). [CrossRef]
  4. Y. Chen, H.-B. Liu, Y. Deng, D. Schauki, M. J. Fitch, R. Osiander, C. Dodson, J. B. Spicer, M. Shur, and X. C. Zhan, "THz spectroscopic investigation of 2,4-dinitrotoluene," Chem. Phys. Lett. 400, 357-361 (2004). [CrossRef]
  5. H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 14, 415-423 (2006). [CrossRef] [PubMed]
  6. T. F. Jenkins, D. C. Leggett, P. H. Miyares, M. E. Walsh, T. A. Ranney, J. H. Cragin, and V. George, "Chemical signatures of TNT-filled land mines," Talanta 54, 501-513 (2001). [CrossRef]
  7. D. Ferro, V. Piacente, R. Gigli, and G. D'Ascenzo, "Determination of the vapour pressure of o-, m-, and p-dinitrobenzene by the torsion-effusion method," J. Chem. Thermodyn. 8, 1137-1143 (1976). [CrossRef]
  8. P. A. Pella, "Measurement of the vapor pressures of TNT, 2.4-DNT, 2.6-DNT, and EGDN," J. Chem. Thermodyn. 9, 301-305 (1977). [CrossRef]
  9. D. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, and D. H. Fine, "Vapor pressure of explosives," J. Energ. Mater. 4, 447-472 (1986). [CrossRef]
  10. C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, "Detection of explosives and explosive related compounds by single photon laser ionization time of flight mass spectrometry," Anal. Chem. 78, 3807-3814 (2006).
  11. J. M. Sylvia, J. B. Janni, J. D. Klein, and K. M. Spencer, "Surface-enhanced Raman detection of 2,4-dnitrotoluene impurity vapor as a marker to locate landmines," Anal. Chem. 72, 5834-5840 (2000). [CrossRef] [PubMed]
  12. K. J. Albert, M. L. Myrick, S. B. Brown, D. L. James, F. P. Milanovich, and D. R. Walt, "Field-deployable sniffer for 2,4-dinitrotoluene detection," Environ. Sci. Technol. 35, 3193-3200 (2001). [CrossRef] [PubMed]
  13. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, "Sensitivity gains in chemosensing by lasing action in organic polymers," Nature 434, 876-879 (2005). [CrossRef] [PubMed]
  14. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown spectroscopy: History, development, and application to pulsed molecular beams," Chem. Rev. 97, 25-51 (1997). [CrossRef] [PubMed]
  15. G. Berden, R. Peeters, and G. Meijer, "Cavity ringdown spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  16. A. Teslja, B. Nizamov, and P. J. Dagdigian, "The electronic spectrum of methyleneimine," J. Phys. Chem. A 108, 4433-4439 (2004). [CrossRef]
  17. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, "Application of mid-infrared cavity ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 μm) optical parametric oscillator," Appl. Phys. B 75, 367-376 (2002). [CrossRef]
  18. J. Janni, B. D. Gilbert, R. W. Field, and J. I. Steinfeld, "Infrared absorption spectra of explosive molecule vapors," Spectrochim. Acta Part A 53, 1375-1381 (1997). [CrossRef]
  19. K. L. McNesby and R. A. Pesce-Rodriguez, "Applications of vibrationally spectroscopy in the study of explosives," in Handbook of Vibrational Spectroscopy, J.M.Chalmers and P.R.Griffiths, eds. (Wiley, 2002), pp. 1-17.
  20. A. D. Usachev, T. S. Miller, J. P. Singh, F. Yueh, P. Jang, and D. L. Monts, "Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region," Appl. Spectrosc. 55, 125-129 (2001). [CrossRef]
  21. W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, and A. O. Dekker, "Ultraviolet and visible absorption spectra in ethyl alcohol. Data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine," Anal. Chem. 22, 1740-1717 (1951). [CrossRef]
  22. C. P. Conduit, "Ultraviolet and infrared spectra of some aromatic compounds," J. Chem. Soc. 1959, 3273-3277 (1959). [CrossRef]
  23. L. Rittfeldt, "Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns," Anal. Chem. 73, 2405-2411 (2001). [CrossRef] [PubMed]
  24. T. Abe, "Ultraviolet absorption spectra of o-, m- and p-dinitrobenzene," Bull. Chem. Soc. Jpn. 33, 220-222 (1960). [CrossRef]
  25. H. Naus and W. Ubachs, "Experimental verification of Rayleigh scattering cross sections," Opt. Lett. 25, 347-349 (2000). [CrossRef]
  26. A. Bucholtz, "Rayleigh-scattering calculations for the terrestrial atmosphere," Appl. Opt. 34, 2765-2773 (1995). [CrossRef] [PubMed]
  27. D. R. Bates, "Rayleigh scattering by air," Planet. Space Sci. 32, 785-790 (1984). [CrossRef]
  28. J. Orphal, "A critical review of the absorption cross sections of O3 and NO2 in the ultraviolet and visible," J. Photochem. Photobiol. A 157, 185-209 (2003). [CrossRef]
  29. R. K. Talukdar, J. B. Burkholder, A. Schmoltner, J. M. Roberts, R. R. Wilson, and A. R. Ravishankara, "Investigation of the loss process for peroxyacetyl nitrate in the atmosphere: UV photolysis and reaction with OH," J. Geophys. Res. 100, 14163-14173 (1995). [CrossRef]
  30. P. Warneck, Chemistry of the Natural Atmosphere, 2nd ed. (Academic, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited