OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 5 — Feb. 10, 2007
  • pp: 648–656

Antireflective grating in the resonance domain for displays

Tetsuya Hoshino, Masahide Itoh, and Toyohiko Yatagai  »View Author Affiliations

Applied Optics, Vol. 46, Issue 5, pp. 648-656 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An antireflective periodic structure different from the moth-eye structure is proposed in a resonance domain whose period is greater than the wavelength of incident light. Using rigorous coupled-wave analysis in the TE mode, a reflectivity of less than 0.2% is performed in a period larger than the wavelength, when an aspect ratio is unity. Changes in diffraction efficiency and transmissivity are small at different wavelengths. This is explained by a newly derived equation based on the vector theory.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Diffraction and Gratings

Original Manuscript: March 29, 2006
Revised Manuscript: September 20, 2006
Manuscript Accepted: October 3, 2006
Published: January 25, 2007

Tetsuya Hoshino, Masahide Itoh, and Toyohiko Yatagai, "Antireflective grating in the resonance domain for displays," Appl. Opt. 46, 648-656 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-J. Ho, C.-Y. Chen, C.-M. Huang, W. J. Lee, W.-R. Liouand, and C.-C. Chang, "Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display applications," Appl. Opt. 44, 6176-6180 (2005). [CrossRef] [PubMed]
  2. S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Shubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997). [CrossRef]
  3. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure," Appl. Phys. Lett. 85, 5769-5771 (2004). [CrossRef]
  4. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, "Extracting light from polymer light-emitting diodes using stamped Bragg gratings," Adv. Funct. Mater. 14, 451-455 (2004). [CrossRef]
  5. H. Ichikawa and T. Baba, "Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal," Appl. Phys. Lett. 84, 457-459 (2003). [CrossRef]
  6. P. Sheng, A. N. Bloch, and R. S. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983). [CrossRef]
  7. Y.-Y. Liou, "Universal visible antireflection coating designs for various substrates," Jpn. J. Appl. Phys. 43, 1339-1342 (2005). [CrossRef]
  8. Y.-Y. Liou and Y.-T. Liu, "Digital designs of broadband visible antireflection coating for wide angular incidence," Jpn. J. Appl. Phys. 44, 163-167 (2005). [CrossRef]
  9. E. B. Grann, M. G. Moharam, and D. A. Pommet, "Optimal design for antireflective tapered two-dimensional subwavelength grating structures," J. Opt. Soc. Am. A 12, 333-342 (1995). [CrossRef]
  10. D. H. Raguin and G. M. Morris, "Antireflection structured surfaces for the infrared spectral region," Appl. Opt. 32, 1154-1167 (1993). [CrossRef] [PubMed]
  11. Y. Ono, Y. Kimura, and N. Nishida, "Antireflection effect in ultrahigh spatial-frequency holographic relief gratings," Appl. Opt. 26, 1142-1146 (1987). [CrossRef] [PubMed]
  12. Y. Kanamori, M. Sasaki, and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24, 1422-1424 (1999). [CrossRef]
  13. C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for broadband antireflection applications," Appl. Phys. Lett. 81, 2980-2982 (2002). [CrossRef]
  14. R. C. Enger and S. K. Case, "Optical elements with ultrahigh spatial-frequency surface corrugations," Appl. Opt. 22, 3220-3226 (1983). [CrossRef] [PubMed]
  15. E. R. Y. Kanamori and Y. Chen, "Antireflection sub-wavelength gratings fabricated by spin-coating replication," Microelectron. Eng. 78-79, 287-293 (2005). [CrossRef]
  16. Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Opt. Rev. 9, 183-185 (2002). [CrossRef]
  17. J. Nishi, K. Kintaka, N. Tohge, N. Noma, M. Hasegawa, and A. Mizutani, "Low-reflection microstructure formed by sol-gel process," Jpn. J. Appl. Phys. 41, 5210-5213 (2002). [CrossRef]
  18. D. H. Raguin and G. M. Morris, "Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles," Appl. Opt. 32, 2582-2598 (1993). [CrossRef] [PubMed]
  19. S. Banerjee, T. Yatagai, and J. B. Cole, "Boosting light transmission through interfaces using subwavelength moth-eye structuring: nonstandard FDTD simulations," in 11th Microoptics Conference (MOC'05) (2005), Vol. H48, pp. 212-213.
  20. H. Lajunen, J. Tervo, and J. Turunen, "High-efficiency broadband diffractive elements based on polarization gratings," Opt. Lett. 29, 803-805 (2004). [CrossRef] [PubMed]
  21. E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Rigorous coupled-wave analysis and applications of grating diffraction," in Diffractive and Miniaturized Optics, S.H.Lee, ed. (SPIE, 1993), Vol. CR49, pp. 3-31.
  22. F. Yamada, H. Numata, and Y. Taira, "Multi-layered flat-surface micro-optical components directly moled on an LCD panel," J. Soc. Inf. Disp. 11, 525-531 (2003). [CrossRef]
  23. M. Okui, M. Kobayashi, J. Arai, and F. Okano, "Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display," Appl. Opt. 44, 4475-4483 (2005). [CrossRef] [PubMed]
  24. B. Kress and P. Meyryueis, Digital Diffractive Optics (Wiley, 2000).
  25. D. A. Pommet, M. G. Moharam, and E. B. Grann, "Limits of scalar diffraction theory for diffractive phase elements," J. Opt. Soc. Am. A 11, 1827-1834 (1994). [CrossRef]
  26. D. Maystre, Rigorous Vector Theories of Diffraction Gratings (Elsevier Science, 1984).
  27. E. N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis," J. Opt. Soc. Am. A 19, 702-715 (2002). [CrossRef]
  28. H. Ichikawa, "Numerical analysis of microretroreflectors: transition reflection to diffraction," J. Opt. A 6, S121-S127 (2004). [CrossRef]
  29. L. Escoubas, J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226, 81-88 (2003). [CrossRef]
  30. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  31. Y. Sheng, D. Feng, and S. Larochelle, "Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory," J. Opt. Soc. Am. 14, 1562-1568 (1997). [CrossRef]
  32. I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Commun. 177, 15-24 (2000). [CrossRef]
  33. J. E. Noponen and A. Vasara, "Electric theory and design of diffractive-lens arrays," J. Opt. Soc. Am. A 10, 434-443 (1993). [CrossRef]
  34. A. Gombert, C. Buhler, W. Hobfeld, J. Mick, B. Blasi, G. Walze, and P. Nitz, "A rigorous study of diffraction effects on the transmission of linear dielectric micro-reflector arrays," J. Opt. A 6, 952-960 (2004). [CrossRef]
  35. I. Richter and P. Fiala, "Mechanisms connected with a new diffraction order formation in surface-relief gratings," Optik 111, 237-245 (2000).
  36. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction E-mode polarization and losses," J. Opt. Soc. Am. 73, 451-455 (1983). [CrossRef]
  37. W. Chao, S. Chi, Y. C. Wu, and C. J. Kuo, "Computer-generated holographic diffuser for color mixing," Opt. Commun. 151, 21-24 (1998). [CrossRef]
  38. Y. Arieli, S. Ozeri, N. Eisenberg, and S. Noach, "Design of a diffractive optical element for wide spectral bandwidth," Opt. Lett. 23, 823-824 (1998). [CrossRef]
  39. M. W. Farn and J. W. Goodman, "Diffractive doublet corrected on-axis at two wavelengths," in SPIE International Lens Design Conference (SPIE, 1990), Vol. 1354, pp. 24-29.
  40. Y. Arieli, S. Ozeri, N. Eisenberg, and S. Noach, "Design of a diffractive optical element for wide spectral bandwidth," Opt. Lett. 23, 823-824 (1998). [CrossRef]
  41. T. Nakai and H. Ogawa, "Development of 3-layer diffractive optical elements employed for wide incident angles," in 2004 International Conference Optics and Photonics in Technology Frontier Tokyo (Optical Society of Japan/JSAP and International Commission for Optics, 2004), pp. 547-548.
  42. J. H. Min, H. Y. Choi, M. G. Lee, J. S. Choi, J. H. Kim, and S. M. Lee, "Holographic backlight unit for mobile LCD devices," J. Soc. Inf. Disp. 11, 653-657 (2003). [CrossRef]
  43. M. Wenyon, P. Molteni, and P. Ralli, "White holographic reflectors for LCDs," in The Society for Information Display 1997 International Symposium, May 4, 1997 (SID, 1997), Vol. 28, pp. 691-694.
  44. C. Sauvan, P. Lalanne, and M.-S. L. Lee, "Broadband blazing with artificial dielectrics," Opt. Lett. 29, 1593-1595 (2004). [CrossRef] [PubMed]
  45. A. K. Aristov, V. Novosel'skii, G. Semenov, and T. V. Schedrunova, "Holographic diffraction grating for side lightning of liquid-crystal displays," J. Opt. Technol. 70, 480-484 (2003). [CrossRef]
  46. D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, "Novel integrated light-guide plates for liquid crystal display backlight," J. Opt. A 7, 111-117 (2005). [CrossRef]
  47. L. A. Whitehead, W. Su, and D. N. Grandmaison, "Evaluation of diffraction loss in prism light guides by finite-differnce time-domain field modeling," Appl. Opt. 37, 5836-5842 (1998). [CrossRef]
  48. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  49. M. Jiang, T. Tamir, and S. Zhang, "Modal theory of diffraction by multilayered gratings containing dielectric and metallic components," J. Opt. Soc. Am. A 18, 807-820 (2001). [CrossRef]
  50. E. Popov and M. Neviere, "Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A 18, 2886-2894 (2001). [CrossRef]
  51. C.-H. Lin, K. M. Leung, and T. Tamir, "Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations," J. Opt. Soc. Am. A 19, 2005-2017 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited