OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 5 — Feb. 10, 2007
  • pp: 795–799

Pulse shaping by the electro-optic effect in chirped periodically poled lithium niobate

Rongan Huang, Xianfeng Chen, Jianhong Shi, and Yuxing Xia  »View Author Affiliations


Applied Optics, Vol. 46, Issue 5, pp. 795-799 (2007)
http://dx.doi.org/10.1364/AO.46.000795


View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an ultrafast pulse shaping method by modulating the pulse phase and amplitude by the electro-optic effect and Bragg diffraction in the aperiodically optical superlattice. Linear-chirped periodically poled lithium niobate is used. The input pulse can be shaped, for example, by compressing it through the extraordinary refractive index change of the crystal by applying and changing the external electric field.

© 2007 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.2090) Optical devices : Electro-optical devices
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 24, 2006
Revised Manuscript: September 15, 2006
Manuscript Accepted: September 26, 2006
Published: January 25, 2007

Citation
Rongan Huang, Xianfeng Chen, Jianhong Shi, and Yuxing Xia, "Pulse shaping by the electro-optic effect in chirped periodically poled lithium niobate," Appl. Opt. 46, 795-799 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-5-795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997). [CrossRef]
  2. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998). [CrossRef]
  3. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999). [CrossRef]
  4. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997). [CrossRef]
  5. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and W. S. Warren, "Ultrafast pulse shaping: amplification and characterization," Opt. Express 3, 366-375 (1998). [CrossRef] [PubMed]
  6. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  7. M. Yamada, M. Saitoh, and H. Ooki, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996). [CrossRef]
  8. H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, "Nanosecond response of Bragg deflectors in periodically poled LiNbO3," IEEE Photon. Technol. Lett. 10, 1730-1732 (1998). [CrossRef]
  9. M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000). [CrossRef]
  10. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, "Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared," Appl. Phys. Lett. 81, 2514-2516 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited