OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 7 — Mar. 1, 2007
  • pp: 1157–1164

Single-molecule detection with axial flow into a micrometer-sized capillary

David A. Ball, Guoqing Shen, and Lloyd M. Davis  »View Author Affiliations


Applied Optics, Vol. 46, Issue 7, pp. 1157-1164 (2007)
http://dx.doi.org/10.1364/AO.46.001157


View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize a new geometry for single-molecule detection with flow for use with a submilliliter drop of sample on an inverted confocal microscope. The solution is sucked into a glass capillary positioned above the ellipsoidal confocal volume so that molecules traverse the longest axis of the ellipsoid for greatest photon yield. Decreased spacing between the capillary tip and laser focus gives increased flow speed, as measured by fluorescence correlation spectroscopy, but also increased background from capillary autofluorescence. Flow can alleviate localized triplet and photobleaching effects and speed single-molecule sampling rates for fluorescence fluctuation spectroscopy determinations of slowly diffusing biomolecules in pharmaceutical drug discovery research.

© 2007 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: June 2, 2006
Revised Manuscript: November 1, 2006
Manuscript Accepted: November 1, 2006
Published: February 12, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
David A. Ball, Guoqing Shen, and Lloyd M. Davis, "Single-molecule detection with axial flow into a micrometer-sized capillary," Appl. Opt. 46, 1157-1164 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-7-1157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nie and R. N. Zare, "Optical detection of single molecules," Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997). [CrossRef] [PubMed]
  2. Y. Ishii and T. Yanagida, "Single molecule detection in life science," Single Mol. 1, 5-16 (2000). [CrossRef]
  3. A. Ishijima and T. Yanagida, "Single molecule nanobioscience," Trends Biochem. Sci. 26, 438-444 (2001). [CrossRef] [PubMed]
  4. K. O. Greulich, "Single molecule techniques for biomedicine and pharmacology," Curr. Pharm. Biotechnol. 5, 243-259 (2004). [CrossRef] [PubMed]
  5. T. Hirschfeld, "Optical microscopic observation of single small molecules," Appl. Opt. 15, 2965-2966 (1976). [CrossRef] [PubMed]
  6. N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, and R. A. Keller, "Laser-induced fluorescence of flowing samples as an approach to single molecule detection in liquids," Anal. Chem. 56, 348-354 (1984). [CrossRef] [PubMed]
  7. D. C. Nquyen, R. A. Keller, and M. Trkula, "Ultrasensitive laser-induced fluorescence detection in hydrodynamically focused flows," J. Opt. Soc. Am. B 4, 138-143 (1987). [CrossRef]
  8. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, "Detection of single fluorescent molecules," Chem. Phys. Lett. 174, 553-557 (1990). [CrossRef]
  9. L. Q. Li and L. M. Davis, "Rapid and efficient detection of single chromophore molecules in aqueous solution," Appl. Opt. 34, 3208-3217 (1995). [CrossRef] [PubMed]
  10. U. Mets and R. Rigler, "Submillisecond detection of single rhodamine molecules in water," J. Fluoresc. 4, 259-264 (1994). [CrossRef]
  11. D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  12. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. Conceptual basis and theory," Biopolymers 13, 1-27 (1974). [CrossRef]
  13. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, "Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution," Nature 374, 555-559 (1995). [CrossRef] [PubMed]
  14. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Jr., "Direct observation of the rotation of F1-ATPase," Nature 386, 299-302 (1997). [CrossRef] [PubMed]
  15. L. M. Davis, P. E. Williams, D. A. Ball, E. D. Matayoshi, and K. M. Swift, "Data reduction methods for application of fluorescence correlation spectroscopy to pharmaceutical drug discovery," Curr. Pharm. Biotechnol. 4, 451-462 (2003). [CrossRef] [PubMed]
  16. L. A. A. de Jong, D. R. A. Uges, J. P. Franke, and R. Bischoff, "Receptor-ligand binding assays: technologies and applications," J. Chromatogr. B: Biomed Sci. Appl. 829, 1-25 (2005). [CrossRef]
  17. L. M. Davis, G. Shen, and D. A. Ball, "Scanning fluorescence fluctuation spectroscopy for molecular brightness assays," presented at the 49th Annual Meeting of the Biophysical Society, Long Beach, Calif., 12-15 Feb. 2005.
  18. A. Koltermann, U. Kettling, J. Bieschke, T. Winkler, and M. Eigen, "Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: High throughput screening for enzyme activity," Proc. Natl. Acad. Sci. U.S.A. 95, 1421-1426 (1998). [CrossRef] [PubMed]
  19. T. Winkler, U. Kettling, A. Koltermann, and M. Eigen, "Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening," Proc. Natl. Acad. Sci. U.S.A. 96, 1375-1378 (1999). [CrossRef] [PubMed]
  20. K. G. Heinze, M. Rarbach, M. Jahnz, and P. Schwille, "Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics," Biophys. J. 83, 1671-1681 (2002). [CrossRef] [PubMed]
  21. J. C. Fister III, S. C. Jacobson, L. M. Davis, and J. M. Ramsey, "Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices," Anal. Chem. 70, 431-437 (1998). [CrossRef] [PubMed]
  22. C. Zander, K. H. Drexhage, K.-T. Han, J. Wolfrum, and M. Sauer, "Single-molecule counting and identification in a microcapillary," Chem. Phys. Lett. 286, 457-465 (1998). [CrossRef]
  23. W. Becker, H. Hickl, C. Zander, K. H. Drexhage, M. Sauer, S. Siebert, and J. Wolfrum, "Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC)," Rev. Sci. Instrum. 70, 1835-1841 (1999). [CrossRef]
  24. B. B. Haab and R. A. Mathies, "Single-molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams," Anal. Chem. 71, 5137-5145 (1999). [CrossRef]
  25. J. J. Zheng and E. S. Yeung, "Counting single DNA molecules in a capillary with radial focusing," Aust. J. Chem. 56, 149-153 (2003). [CrossRef]
  26. M. B. Wabuyele, S. M. Ford, J. Barrow, and S. A. Soper, "Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices," Electrophoresis 22, 3939-3948 (2001). [CrossRef] [PubMed]
  27. A. Lundqvist, D. T. Chiu, and O. Orwar, "Electrophoretic separation and confocal laser-induced fluorescence detection at ultralow concentrations in constricted fused-silica capillaries," Electrophoresis 24, 1737-1744 (2003). [CrossRef] [PubMed]
  28. S. M. Stavis, J. B. Edel, K. T. Samiee, and H. G. Craighead, "Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel," Lab Chip 5, 337-343 (2005). [CrossRef] [PubMed]
  29. J. M. Song, T. Inoue, H. Kawazumi, and T. Ogama, "Single molecule detection by laser two-photon excited fluorescence in a capillary flowing cell," Anal. Sci. 14, 913-916 (1998). [CrossRef]
  30. A. Van Orden, H. Cai, P. M. Goodwin, and R. A. Keller, "Efficient detection of single DNA fragments in flowing sample streams by two photon fluorescence excitation," Anal. Chem. 71, 2108-2116 (1999). [CrossRef] [PubMed]
  31. P. S. Dittrich and P. Schwille, "An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles," Anal. Chem. 75, 5767-5774 (2003). [CrossRef] [PubMed]
  32. B. H. Kunst, A. Schots, and A. J. W. G. Visser, "Design of a confocal microfluidic particle sorter using fluorescent photon burst detection," Rev. Sci. Instrum. 75, 2892-2898 (2004). [CrossRef]
  33. P. S. Dittrich and A. Manz, "Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in μTAS," Anal. Bioanal. Chem. 382, 1771-1782 (2005). [CrossRef] [PubMed]
  34. J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005). [CrossRef] [PubMed]
  35. A. J. Skulan, L. M. Barrett, A. K. Singh, E. B. Cummings, and G. J. Flechtner, "Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment," Anal. Chem. 77, 6790-6797 (2005). [CrossRef] [PubMed]
  36. J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001). [CrossRef]
  37. K. Dörre, J. Stephan, M. Lapczyna, M. Stuke, H. Dunkel, and M. Eigen, "Highly efficient single molecule detection in microstructures," J. Biotechnol. 86, 225-236 (2001). [CrossRef] [PubMed]
  38. B. H. Kunst, A. Schots, and A. J. W. G. Visser, "Detection of flowing fluorescent particles in a microcapillary using fluorescence correlation spectroscopy," Anal. Chem. 74, 5350-5357 (2002). [CrossRef] [PubMed]
  39. J. P. Shelby and D. T. Chiu, "Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection," Anal. Chem. 75, 1387-1392 (2003). [CrossRef] [PubMed]
  40. M. E. Johnson and J. P. Landers, "Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems," Electrophoresis 25, 3513-3527 (2004). [CrossRef] [PubMed]
  41. L. Tao and R. T. Kennedy, "Laser-induced fluorescence detection in microcolumn separations," Trends Analyt. Chem. 17, 484-491 (1998). [CrossRef]
  42. H. Qian and E. L. Elson, "Analysis of confocal laser optics for 3D fluorescence correlation spectroscopy," Appl. Opt. 30, 1185-1195 (1991). [CrossRef] [PubMed]
  43. S. R. Aragón and R. Pecora, "Fluorescence correlation spectroscopy as a probe of molecular dynamics," J. Chem. Phys. 64, 1791-1803 (1976). [CrossRef]
  44. R. Rigler, J. Widengren, and U. Mets, "Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy," in Fluorescence Spectroscopy: New Methods and Applications, O.S.Wolfbeis, ed. (Springer-Verlag, 1992), pp. 13-24.
  45. L. M. Davis, G. Q. Shen, and D. A. Ball, "Saturation effects in fluorescence correlation spectroscopy," in Multiphoton Microscopy in the Biomedical Sciences, A. Periasamy, P. T. C. So, eds., Proc. SPIE 5700, 128-137 (2005). [CrossRef]
  46. M. A. Holden, S. Kumar, E. T. Castellana, A. Beskok, and P. S. Cremer, "Generating fixed concentration arrays in a microfluidic device," Sens. Actuators B 92, 199-207 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited