OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 8 — Mar. 10, 2007
  • pp: 1343–1360

Comparison of spectral variation from spectroscopy to spectral imaging

Steven C. Gebhart, Shovan K. Majumder, and Anita Mahadevan-Jansen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 8, pp. 1343-1360 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical biopsy has been shown to discriminate between normal and diseased tissue with high sensitivity and specificity. Fiber-optic probe-based spectroscopy systems do not provide the necessary spatial information to guide therapy effectively, ultimately requiring a transition from probe-based spectroscopy to spectral imaging. The effect of such a transition on fluorescence and diffuse reflectance line shape is investigated. Inherent differences in spectral line shape between spectroscopy and imaging are characterized and many of these differences may be attributed to a shift in illumination–collection geometry between the two systems. Sensitivity of the line-shape disparity is characterized with respect to changes in sample absorption and scattering as well as to changes in various parameters of the fiber-optic probe design (e.g., fiber diameter, beam steering). Differences in spectral line shape are described in terms of the relative relationship between the light diffusion within the tissue and the distribution of source–detector separation distances for the probe-based and imaging illumination–collection geometries. Monte Carlo simulation is used to determine fiber configurations that minimize the line-shape disparity between the two systems. In conclusion, we predict that fiber-optic probe designs that mimic a spectral imaging geometry and spectral imaging systems designed to emulate a probe-based geometry will be difficult to implement, pointing toward a posteriori correction for illumination–collection geometry to reconcile imaging and probe-based spectral line shapes or independent evaluation of tissue discrimination accuracy for probe-based and spectral imaging systems.

© 2007 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(260.2510) Physical optics : Fluorescence
(300.6170) Spectroscopy : Spectra

Original Manuscript: May 9, 2006
Revised Manuscript: September 13, 2006
Manuscript Accepted: November 2, 2006
Published: February 20, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Steven C. Gebhart, Shovan K. Majumder, and Anita Mahadevan-Jansen, "Comparison of spectral variation from spectroscopy to spectral imaging," Appl. Opt. 46, 1343-1360 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]
  2. A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31-70 (1996). [CrossRef]
  3. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000). [CrossRef] [PubMed]
  4. W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001). [CrossRef]
  5. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001). [CrossRef] [PubMed]
  6. W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy: an in vitro study," J. Biomed. Opt. 5, 214-220 (2000). [CrossRef] [PubMed]
  7. S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005). [CrossRef] [PubMed]
  8. M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West. J. Med. 168, 114-120 (1998). [PubMed]
  9. A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann III, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997). [CrossRef] [PubMed]
  10. M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sadin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998). [CrossRef] [PubMed]
  11. S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999). [CrossRef]
  12. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000). [CrossRef] [PubMed]
  13. W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, "Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence," Neurosurgery 42, 518-526 (1998). [CrossRef] [PubMed]
  14. J. Wu, F. Partovi, M. S. Field, and R. P. Rava, "Diffuse reflectance from turbid media--an analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993). [CrossRef] [PubMed]
  15. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003). [CrossRef] [PubMed]
  16. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  17. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Optical properties effects upon the collection efficiency of optical fibers in different probe configurations," IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003). [CrossRef]
  18. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of a single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003). [CrossRef] [PubMed]
  19. Q. Liu, C. F. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003). [CrossRef] [PubMed]
  20. C. F. Zhu, G. M. Palmer, T. M. Breslin, F. S. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032 (2005). [CrossRef] [PubMed]
  21. J. M. Schmitt and G. Kumar, "Spectral distortions in near-infrared spectroscopy of turbid materials," Appl. Spectrosc. 50, 1066-1073 (1996). [CrossRef]
  22. G. Kumar and J. M. Schmitt, "Optimal probe geometry for near-infrared spectroscopy of biological tissue," Appl. Opt. 36, 2286-2293 (1997). [CrossRef] [PubMed]
  23. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997). [CrossRef] [PubMed]
  24. T. J. Pfefer, L. S. Matchette, and R. Drezek, "Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue," Med. Biol. Eng. Comput. 42, 669-673 (2004). [CrossRef] [PubMed]
  25. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003). [CrossRef] [PubMed]
  26. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002). [CrossRef] [PubMed]
  27. C. F. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003). [CrossRef] [PubMed]
  28. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004). [CrossRef] [PubMed]
  29. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  30. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, "Relation between fluorescence spectra of dilute and turbid samples," Appl. Opt. 33, 414-423 (1994). [CrossRef] [PubMed]
  31. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: recovery of instrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996). [CrossRef] [PubMed]
  32. Q. G. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  33. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001). [CrossRef]
  34. R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, and M. S. Feld, "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter," Am. Heart. J. 118, 381-391 (1989). [CrossRef] [PubMed]
  35. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989). [CrossRef] [PubMed]
  36. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, "Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998). [CrossRef]
  37. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, "Fluorescence spectra provide information on the depth of fluorescent lesions in tissue," Appl. Opt. 44, 1934-1941 (2005). [CrossRef] [PubMed]
  38. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging designed for brain tumor demarcation," Appl. Opt. (to be published). [PubMed]
  39. S. C. Gebhart and A. Mahadevan-Jansen, "Brain tumor demarcation with liquid-crystal tunable filter spectral imaging," in SPIE Photonics West, Advanced Biomedical and Clinical Diagnostic Systems IV, G. E. Cohn, W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Proc. SPIE 6080, 60800I (2006). [CrossRef]
  40. S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006). [CrossRef] [PubMed]
  41. S. Prahl, M. van Gemert, and A. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993). [CrossRef] [PubMed]
  42. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993). [CrossRef] [PubMed]
  43. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, "Study of fiber-optic probes for in vivo medical Raman spectroscopy," Appl. Spectrosc. 53, 619-627 (1999). [CrossRef]
  44. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003). [CrossRef] [PubMed]
  45. S. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. Welch and M. v. Gemert, eds. (Plenum, 1995), pp. 73-100.
  46. W. F. Cheong, "Summary of optical properties," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 275-304.
  47. B. L. McClain, J. Ma, and D. Ben-Amotz, "Optical absorption and fluorescence spectral imaging using fiber bundle image compression," Appl. Spectrosc. 53, 1118-1122 (1999). [CrossRef]
  48. N. Ghosh, S. K. Majumder, and P. K. Gupta, "Polarized fluorescence spectroscopy of human tissues," Opt. Lett. 27, 2007-2009 (2002). [CrossRef]
  49. Y. Liu, Y. L. Kim, and V. Backman, "Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating," Appl. Opt. 44, 2288-2299 (2005). [CrossRef] [PubMed]
  50. K. Y. Yong, S. P. Morgan, I. M. Stockford, and M. C. Pitter, "Characterization of layered scattering media using polarized light measurements and neural networks," J. Biomed. Opt. 8, 504-511 (2003). [CrossRef] [PubMed]
  51. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002). [CrossRef] [PubMed]
  52. N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001). [CrossRef] [PubMed]
  53. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, "Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy," Appl. Spectrosc. 59, 393-400 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited