OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 10 — Apr. 1, 2008
  • pp: 1617–1627

Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements

Benjamin R. Herman, Barry Gross, Fred Moshary, and Samir Ahmed  »View Author Affiliations


Applied Optics, Vol. 47, Issue 10, pp. 1617-1627 (2008)
http://dx.doi.org/10.1364/AO.47.001617


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

© 2008 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 26, 2007
Manuscript Accepted: November 27, 2007
Published: March 31, 2008

Citation
Benjamin R. Herman, Barry Gross, Fred Moshary, and Samir Ahmed, "Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements," Appl. Opt. 47, 1617-1627 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-10-1617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, “Climate forcing by antropogenic aerosol,” Science 255, 423-430 (1992). [CrossRef] [PubMed]
  2. J. A. Coakley and R. D. Cess, “Response of the NCAR community climate model to the radiative forcing by the naturally occurring tropospheric aerosols,” J. Atmos. Sci. 42, 1677-1692(1985). [CrossRef]
  3. G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18, 988-993 (1979). [CrossRef] [PubMed]
  4. N. T. O'Neill and J. R. Miller, “Combined solar aureole and solar beam extinction measurements: 2. Studies of the inferred aerosol size distributions,” Appl. Opt. 23, 3697-3703(1984). [CrossRef] [PubMed]
  5. D. Tanre, C. Devaux, M. Herman, R. Santer, and J. Y Gac, “Radiative properties of desert aerosols by optical ground based measurements at solar wavelengths,” J. Geophys. Res. 93, 14223-14231 (1988). [CrossRef]
  6. G. Tonna, T. Nakajima, and R. Rao, “Aerosol features retrieved from solar aureole data: a simulation study concerning a turbid atmosphere,” Appl. Opt. 34, 4486-4499 (1995). [CrossRef] [PubMed]
  7. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, and B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35, 2672-2686 (1996). [CrossRef] [PubMed]
  8. M. D. King, D. M. Byrne, B. M. Herman, and J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153-2167(1978). [CrossRef]
  9. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599-1602 (1992). [CrossRef]
  10. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, and Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103, 19673-19690(1998). [CrossRef]
  11. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469-1482(2000). [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. B. R. Herman, B. Gross, F. Moshary, and S. Ahmed, “Extension of the graphical technique for estimation of particle size distribution parameters for the consistent intercomparison of diverse sets of multiwavelength lidar derived optical coefficients,” Appl. Opt. 44, 6462-6473 (2005). [CrossRef] [PubMed]
  14. B. R. Lienert, J. N. Porter, and S. K. Sharma, “Repetitive genetic inversion of optical extinction data,” Appl. Opt. 40, 3476-3482 (2001). [CrossRef]
  15. M. D. Post, “A graphical technique for retrieving size distribution parameters from multiple measurements: visualization and error analysis,” J. Atmos. Oceanic Technol. 13, 863-869(1996). [CrossRef]
  16. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342(2001). [CrossRef]
  17. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999). [CrossRef]
  18. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358-2368 (1999). [CrossRef]
  19. M. Pahlow, D. Müller, M. Tesche, H. Eichler, G. Feingold, W. L. Eberhard, and Y.-F. Cheng, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements,” Appl. Opt. 45, 7429-7442 (2006). [CrossRef] [PubMed]
  20. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180-1195 (2004). [CrossRef] [PubMed]
  21. D. A. Ligon, J. B. Gillespie, and P. Pellegrino, “Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method,” Appl. Opt. 39, 4402-4410(2000). [CrossRef]
  22. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer-Verlag, 2004).
  23. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991).
  24. D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations: case study,” Appl. Opt. 40, 4863-4869 (2001). [CrossRef]
  25. B. R. Herman, B. Gross, F. Moshary, and S. Ahmed, “Methods of assessing uncertainty in determining particle size distribution parameters from optical backscatter and extinction measurements,” Proc. SPIE 5154, 208-215 (2003). [CrossRef]
  26. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Markov Chain Monte Carlo in Practice (Chapman & Hall, 1996).
  27. J. Tamminen, “Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method,” J. Geophys. Res. 109, D19303 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited