OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1790–1796

Optical dispersion of radiation-grafted fluoro-polymer

Fouad El-Diasty and N. M. El-Sawy  »View Author Affiliations

Applied Optics, Vol. 47, Issue 11, pp. 1790-1796 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlling the index of refraction of polymers plays an important role in their advanced nonlinear optical and electro-optical applications as well as in nanophotonics and biophotonic technologies. A radiation-induced grafting of acrylic acid (AAc) onto poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) copolymer films was carried out to synthesize graft copolymer films using γ–irradiation by the mutual method. The resulted films were characterized by Fourier transform infrared spectroscopy. The grafting process is associated with cross-linking through which a considerable change in the material refractive index is achieved. The linear refractive index, optical dispersion, and the quantum parameters of grafted poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA-g-PAAc) polymeric film are determined in a wide spectral range of 0.2 3 μm . The wavelength for zero material dispersion is evaluated. The oscillator, dispersion, and lattice energies, respectively, are calculated revealing the optical properties of the studied trunk polymeric substrate and the grafted ones. The origin of the optical properties has been discussed.

© 2008 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.5470) Materials : Polymers
(260.2030) Physical optics : Dispersion
(350.5610) Other areas of optics : Radiation

ToC Category:
Physical Optics

Original Manuscript: December 10, 2007
Manuscript Accepted: February 4, 2008
Published: April 9, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Fouad El-Diasty and N. M. El-Sawy, "Optical dispersion of radiation-grafted fluoro-polymer," Appl. Opt. 47, 1790-1796 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Hegazy, A. M. Dessouki, N. B. Al-Assy, N. M. El-Sawy, and M. A. Abdel-Ghaffar, “Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers I. Kinitic study on the grafting onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer,” J. Polym. Sci., Part A-1 30, 1969-1970(1992).
  2. N. M. El-Sawy, E. A. Hegazy, A. M. Rabie, A. Ahmed, and G. A. Miligy, “Investigation on radiation grafting of vinyl acetate onto (tetrafluoroethylene-perfluorovinyl ether) copolymer films,” Polym. Int. 33, 285-291 (1994). [CrossRef]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118-119(1961). [CrossRef]
  4. R. W. Boyed, Nonlinear Optics (Academic Press, 1992), Chapt. 1.
  5. C. Chen and G. Liu, “Recent advances in nonlinear optical and electro-optical materials,” Ann. Rev. Mater. Sci. 16, 203-243(1986).
  6. D. S. Chemla, J. L. Oudar, and J. Jerphagnon, “F9 A molecular engineering approach to second-order optical susceptibilities of organic crystals and molecules,” Opt. Commun. 18, 54(1976). [CrossRef]
  7. P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8, 11-19 (2004). [CrossRef]
  8. C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725-6760 (2003). [CrossRef]
  9. D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), Chapt. 10.
  10. M. C. Gupta, Handbook of Photonics (CRC, 1997), Part A, Section III.
  11. The Handbook of Plastic Optics, U.S. Precision Lens, Ohio 45245, Cincinnati, 1973, chapter 2.
  12. D. F. Horne, Optical Production Technology (Hilger, 1983), p. 253.
  13. S. N, Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29, 1481-1490 (2007).
  14. R. L. J. Bellany, The IR-Spectra of Complex Molecules, 2nd ed. (Wiley, 1958).
  15. N. M. El-Sawy and F. Al Sagheer, “Radiation-induced graft polymerization of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer films: complexation with some transition metals and biological activity,” Eur. Polym. J. 37, 161-166 (2001). [CrossRef]
  16. D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy (Dover, 1978).
  17. M. A. Khashan and A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174, 445-453 (2000). [CrossRef]
  18. R. W. Ditchburn, Light (Dover, 1991), p. 457.
  19. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980), p. 93.
  20. S. H. Wemple and M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338-1351 (1971).
  21. S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767-3777 (1973).
  22. S. H. Wemple, “Material dispersion in optical fibers,” Appl. Opt. 18, 31-35 (1979).
  23. H. Poignant, “Dispersive and scattering properties of a ZrF4 based glass,” Electron. Lett. 17, 973-974 (1981). [CrossRef]
  24. K. Nassau and S. H. Wemple, “Material dispersion slope in optical-fibre waveguides,” Electron. Lett. 18, 450-451 (1982). [CrossRef]
  25. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999). [CrossRef]
  26. L. Eldada and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54-68(2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited