OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1816–1831

Doppler-free, multiwavelength acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information processor

Sangtaek Kim, Robert R. Mcleod, M. Saffman, and Kelvin H. Wagner  »View Author Affiliations

Applied Optics, Vol. 47, Issue 11, pp. 1816-1831 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (10743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a dual wavelength acousto-optic deflector (AOD) designed to deflect two wavelengths to the same angles by driving with two RF frequencies. The AOD is designed as a beam scanner to address two-photon transitions in a two-dimensional array of trapped neutral Rb 87 atoms in a quantum computer. Momentum space is used to design AODs that have the same diffraction angles for two wavelengths (780 and 480 nm ) and have nonoverlapping Bragg-matched frequency response at these wavelengths, so that there will be no cross talk when proportional frequencies are applied to diffract the two wavelengths. The appropriate crystal orientation, crystal shape, transducer size, and transducer height are determined for an AOD made with a tellurium dioxide crystal ( TeO 2 ). The designed and fabricated AOD has more than 100 resolvable spots, widely separated band shapes for the two wavelengths within an overall octave bandwidth, spatially overlapping diffraction angles for both wavelengths (780 and 480 nm ), and a 4 μs or less access time. Cascaded AODs in which the first device upshifts and the second downshifts allow Doppler-free scanning as required for addressing the narrow atomic resonance without detuning. We experimentally show the diffraction-limited Doppler-free scanning performance and spatial resolution of the designed AOD.

© 2008 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Optical Devices

Original Manuscript: November 8, 2007
Manuscript Accepted: December 7, 2007
Published: April 9, 2008

Sangtaek Kim, Robert R. Mcleod, M. Saffman, and Kelvin H. Wagner, "Doppler-free, multiwavelength acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information processor," Appl. Opt. 47, 1816-1831 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484-1509 (1997). [CrossRef]
  3. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997). [CrossRef]
  4. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883-887 (2001). [CrossRef]
  5. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281-324 (2003). [CrossRef]
  6. J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij, “Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits,” Nature 447, 836-839(2007). [CrossRef] [PubMed]
  7. T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys. 69, 853-898 (2006). [CrossRef]
  8. D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006). [CrossRef] [PubMed]
  9. D. Schrader, I. Dotsenko, M. Khudaverdyan, and Y. Miroshnychenko, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004). [CrossRef] [PubMed]
  10. M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A 75, 040301 (2007). [CrossRef]
  11. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060-1063 (1999). [CrossRef]
  12. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208-2211 (2000). [CrossRef] [PubMed]
  13. M. Saffman and T. G. Walker, “Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms,” Phys. Rev. A 72, 022347 (2005). [CrossRef]
  14. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions,” (submitted to Phys. Rev. Lett. ). [PubMed]
  15. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545-6555 (2000). [CrossRef]
  16. L. Sun, J. Kim, C. Jang, D. An, X. Lu, Q. Zhou, J. M. Taboada, R. T. Chen, J. J. Maki, S. Tang, H. Zhang, W. H. Steler, C. Zhang, and L. R. Dalton, “Polymeric waveguide prism-based electro-optic beam deflector,” Opt. Eng. 40, 1217-1222 (2001). [CrossRef]
  17. L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett. 10, 525-527 (1998). [CrossRef]
  18. C. Kim, C. Knoernschild, B. Liu, and J. Kim, “Design and characterization of MEMS micromirrors for ion-trap quantum computation,” IEEE J. Quantum Electron. 13, 322-329 (2007). [CrossRef]
  19. F. W. Freyre, “Zero frequency shift Bragg cell beam deflection and translation,” Appl. Opt. 20, 3896-3900 (1981). [CrossRef] [PubMed]
  20. F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15, 3589-3596(2007). [CrossRef] [PubMed]
  21. R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.
  22. A. Yariv and P. Yeh, ,i>Optical Waves in Crystals (Wiley-Interscience, 2003).
  23. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, 1995).
  24. R. Mcleod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I. Design,” Appl. Opt. 35, 6331-6353 (1996). [CrossRef] [PubMed]
  25. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736-3745 (1971). [CrossRef]
  26. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
  27. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley-Interscience, 1992).
  28. A. Fukumoto, M. Kawabuchi, and H. Hayami, “Polarization considerations in the operation of an two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812-813 (1975). [CrossRef] [PubMed]
  29. P. S. Guilfoyle, “Problems in two dimensions,” Proc. SPIE 341, 199-208 (1982).
  30. A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489-4495 (1972). [CrossRef]
  31. T. Yano, M. Kawabuchi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975). [CrossRef]
  32. P. Maak, L. Jakab, A. Barosci, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999). [CrossRef]
  33. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, “Realization of a two-photon maser ocillator,” Phys. Rev. Lett. 59, 1899-1902 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited