OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1880–1892

Atmospheric turbulence profiling with slodar using multiple adaptive optics wavefront sensors

Lianqi Wang, Matthias Schöck, and Gary Chanan  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1880-1892 (2008)
http://dx.doi.org/10.1364/AO.47.001880


View Full Text Article

Enhanced HTML    Acrobat PDF (1973 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The slope detection and ranging (slodar) method recovers atmospheric turbulence profiles from time averaged spatial cross correlations of wavefront slopes measured by Shack–Hartmann wavefront sensors. The Palomar multiple guide star unit (MGSU) was set up to test tomographic multiple guide star adaptive optics and provided an ideal test bed for slodar turbulence altitude profiling. We present the data reduction methods and slodar results from MGSU observations made in 2006. Wind profiling is also performed using delayed wavefront cross correlations along with slodar analysis. The wind profiling analysis is shown to improve the height resolution of the slodar method and in addition gives the wind velocities of the turbulent layers.

© 2008 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: September 4, 2007
Revised Manuscript: December 20, 2007
Manuscript Accepted: January 25, 2008
Published: April 4, 2008

Citation
Lianqi Wang, Matthias Schöck, and Gary Chanan, "Atmospheric turbulence profiling with slodar using multiple adaptive optics wavefront sensors," Appl. Opt. 47, 1880-1892 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Ellerbroek and F. J. Rigaut, “Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes,” in Adaptive Optical Systems Technology, P. L. Wizinowich, ed., Proc. SPIE, 4007, 1088-1099 (2000).
  2. A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941-951 (2004). [CrossRef]
  3. R. W. Wilson, “slodar: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103-108 (2002). [CrossRef]
  4. T. Butterley, R. W. Wilson, and M. Sarazin, “Determination of the profile of atmospheric optical turbulence strength from slodar data,” Mon. Not. R. Astron. Soc. 369, 835-845 (2006). [CrossRef]
  5. R. W. Wilson, J. Bate, J. C. Guerra, N. N. Hubin, M. Sarazin, and C. D. Saunter, “Development of a portable slodar turbulence profiler,” in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE 5490, 758-765 (2004).
  6. L. Jolissaint, O. Keskin, C. Bradley, B. Wallace, and A. Hilton, “Multiple-layer optical turbulence generator principle and slodar characterization: preliminary results,” in ,i>Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE 5572, 256-261(2004).
  7. G. D. Love, C. N. Dunlop, S. Patrick, C. D. Saunter, R. W. Wilson, and C. Wright, “Horizontal turbulence measurements using slodar,” in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 27-32 (2005).
  8. V. Velur, R. C. Flicker, B. C. Platt, M. C. Britton, R. G. Dekany, M. Troy, J. E. Roberts, J. C. Shelton, and J. Hickey, “Multiple guide star tomography demonstration at Palomar observatory,” in Advances in Adaptive Optics II, B. L. Ellerbroek and D. Bonaccini Calia, eds., Proc. SPIE 6272, 627258 (2006).
  9. P. B. Stetson, “daophot--a computer program for crowded-field stellar photometry,” Publ. Astron. Soc. Pac. 99, 191-222(1987). [CrossRef]
  10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd ed. (Cambridge Press, 1992).
  11. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427-1435 (1965).
  12. V. Kornilov, A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin, and M. S. Sarazin, “mass: a monitor of the vertical turbulence distribution,” in Adaptive Optical System Technologies II, P. L. Wizinowich and D. Bonaccini, eds., Proc. SPIE 4839, 837-845 (2003).
  13. G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London, Ser. A 164, 476-490 (1938).
  14. M. Schöck and E. J. Spillar, “Method for a quantitative investigation of the frozen flow hypothesis,” J. Opt. Soc. Am. A 17, 1650-1658 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited