OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1893–1901

Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294 1143 K

Fredrik Vestin, Kristin Nilsson, and Per-Erik Bengtsson  »View Author Affiliations


Applied Optics, Vol. 47, Issue 11, pp. 1893-1901 (2008)
http://dx.doi.org/10.1364/AO.47.001893


View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experiments were performed in the temperature range of 294 1143 K in pure CO 2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO 2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2–3%. Simultaneous thermometry and relative CO 2 / N 2 -concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K , limitations were observed at flame temperatures where temperatures were overestimated and relative CO 2 / N 2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: December 17, 2007
Manuscript Accepted: February 16, 2008
Published: April 4, 2008

Citation
Fredrik Vestin, Kristin Nilsson, and Per-Erik Bengtsson, "Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K," Appl. Opt. 47, 1893-1901 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-11-1893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Combustion Science and Technology book series, 2nd ed. (Gordon & Breach, 1996), Vol. 3.
  2. D. A. Greenhalgh, Quantitative CARS Spectroscopy, Advances in Non-Linear Spectroscopy (Wiley, 1988), pp. 193-251.
  3. P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973). [CrossRef]
  4. I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978). [CrossRef]
  5. M. Alden, H. Edner, and S. Svanberg, “Coherent anti-Stokes Raman-spectroscopy (CARS) applied in combustion probing,” Phys. Scr. 27, 29-38 (1983). [CrossRef]
  6. M. Alden, P. E. Bengtsson, H. Edner, S. Kroll, and D. Nilsson, “Rotational CARS--a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206-3219 (1989).
  7. M. Alden, P. E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493-4500 (1986).
  8. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman-spectroscopy and coherent Stokes Raman-spectroscopy with arbitrary pump Stokes spectral separation,” Opt. Lett. 11, 496-498 (1986).
  9. P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992). [CrossRef]
  10. F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).
  11. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).
  12. C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004). [CrossRef]
  13. J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).
  14. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust gas recirculation measurements in a homogeneous charge compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006). [CrossRef]
  15. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993). [CrossRef]
  16. L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).
  17. M. Schenk, A. Thumann, T. Seeger, and A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2-O2 concentration,” Appl. Opt. 37, 5659-5671 (1998).
  18. M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004). [CrossRef]
  19. J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).
  20. J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006). [CrossRef]
  21. M. Schenk, T. Seeger, and A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. 44, 6526-6536 (2005). [CrossRef]
  22. M. Schenk, T. Seeger, and A. Leipertz, “Simultaneous and time-resolved temperature and relative CO2─N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582-5593 (2005). [CrossRef]
  23. F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).
  24. G. Herzberg, Spectra of Diatomic Molecules, Molecular spectra and molecular structure (Robert E. Krieger, 1989), Vol. I.
  25. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Van Nostrand, 1945), Vol. II.
  26. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992). [CrossRef]
  27. L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981). [CrossRef]
  28. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Krieger, 1991), Vol. III.
  29. M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).
  30. B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990). [CrossRef]
  31. M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).
  32. M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).
  33. M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003). [CrossRef]
  34. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39 (33), 6243-6256 (2000).
  35. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005). [CrossRef]
  36. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).
  37. F. Beyrau, M. C. Weikl, T. Seeger, and A. Leipertz, “Application of an optical pulse stretcher to coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 29, 2381-2383 (2004). [CrossRef]
  38. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006). [CrossRef]
  39. F. Vestin and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” submitted to Proceedings of the Combustion Institute (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited