OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 11 — Apr. 10, 2008
  • pp: 1902–1906

Biopolymer-based material used in optical image correlation

Jaroslaw Mysliwiec, Anna Kochalska, and Andrzej Miniewicz  »View Author Affiliations

Applied Optics, Vol. 47, Issue 11, pp. 1902-1906 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the possible application of a modified deoxyribonucleic acid (DNA)-dye system for dynamic processing of optical information, e.g., optical correlation. The system consists of a biopolymeric matrix made of DNA substituted with the cationic surfactant molecule cetyltrimethyl-ammonium chloride (CTMA) and doped with a photochromic Disperse Red 1 dye. Fast dynamics (millisecond range of rise and fall times) of output correlation signal formation was measured in a joint Fourier transform optical correlator experimental setup. Full reversibility of the correlation signal and reproducibility were observed even after long-time exposures.

© 2008 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(160.1435) Materials : Biomaterials
(190.2055) Nonlinear optics : Dynamic gratings
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: January 3, 2008
Manuscript Accepted: March 8, 2008
Published: April 4, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Jaroslaw Mysliwiec, Anna Kochalska, and Andrzej Miniewicz, "Biopolymer-based material used in optical image correlation," Appl. Opt. 47, 1902-1906 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41, 683-733(1990). [CrossRef] [PubMed]
  2. K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002). [CrossRef]
  3. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000). [CrossRef]
  4. E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).
  5. A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006). [CrossRef]
  6. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001). [CrossRef]
  7. A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007). [CrossRef]
  8. J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004). [CrossRef]
  9. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006). [CrossRef]
  10. B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006). [CrossRef]
  11. Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002). [CrossRef]
  12. A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007). [CrossRef]
  13. K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998). [CrossRef]
  14. E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005). [CrossRef]
  15. S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004). [CrossRef]
  16. A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998). [CrossRef]
  17. J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007). [CrossRef]
  18. A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007). [CrossRef] [PubMed]
  19. J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980). [CrossRef]
  20. S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23, 1769-1771 (1998). [CrossRef]
  21. N. Hampp, R. Thoma, D. Oesterhelt, and C. Braeuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96-->Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834-1841 (1992). [CrossRef] [PubMed]
  22. D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited