OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 14 — May. 10, 2008
  • pp: 2557–2563

Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods

Sergi Gallego, Andrés Márquez, David Méndez, Manuel Ortuño, Cristian Neipp, Elena Fernández, Inmaculada Pascual, and Augusto Beléndez  »View Author Affiliations


Applied Optics, Vol. 47, Issue 14, pp. 2557-2563 (2008)
http://dx.doi.org/10.1364/AO.47.002557


View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg’s angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.

© 2008 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Materials

History
Original Manuscript: February 6, 2008
Revised Manuscript: April 16, 2008
Manuscript Accepted: April 16, 2008
Published: May 2, 2008

Citation
Sergi Gallego, Andrés Márquez, David Méndez, Manuel Ortuño, Cristian Neipp, Elena Fernández, Inmaculada Pascual, and Augusto Beléndez, "Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods," Appl. Opt. 47, 2557-2563 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-14-2557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003). [CrossRef]
  2. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278-2287 (1998).
  3. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).
  4. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
  5. Holographic Data Storage, Springer Series in Optical Sciences, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000).
  6. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).
  7. J. V. Kelly, F. T. O' Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-406 (2005). [CrossRef]
  8. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004). [CrossRef]
  9. I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).
  10. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000). [CrossRef]
  11. A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003). [CrossRef]
  12. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007). [CrossRef]
  13. J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997). [CrossRef]
  14. T. Endo and F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” in Polymeric Materials Encyclopedia (CRC Press, 1996), Vol. 10, pp. 7550-7554.
  15. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43, 4018-4024 (2004). [CrossRef]
  16. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998). [CrossRef]
  17. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005). [CrossRef]
  18. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  19. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000). [CrossRef]
  20. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  21. I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
  22. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005). [CrossRef]
  23. S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).
  24. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003). [CrossRef]
  25. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995).
  26. P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, 1953), pp. 161-177.
  27. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003). [CrossRef]
  28. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O' Neill, and J. T. Sheridan, “The impact of inhibition processes during grating formation in photopolymer materials,” Proc. SPIE 5827, 232-243 (2005).
  29. K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007). [CrossRef]
  30. K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
  31. S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003). [CrossRef]
  32. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited