OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 16 — Jun. 1, 2008
  • pp: 2961–2970

Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling

B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan  »View Author Affiliations

Applied Optics, Vol. 47, Issue 16, pp. 2961-2970 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous, full-vectorial and computationally efficient finite-element-based modal solution, together with junction analysis and beam propagation approaches have been used to study bending loss, transition loss, mode coupling, and polarization coupling in bent optical waveguides. The waveguide offset and their widths have been optimized to reduce the transition loss and the mode beating.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: November 20, 2007
Revised Manuscript: April 24, 2008
Manuscript Accepted: April 28, 2008
Published: May 21, 2008

B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan, "Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling," Appl. Opt. 47, 2961-2970 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  2. M. Zirngibl, C. H. Joyner, L. W. Stulz, Th. Gaiffe, and C. Dragone, “Polarization independent 8×8 waveguide grating multiplexers on InP,” Electron. Lett. 29, 201-202 (1993). [CrossRef]
  3. R. R. Hayes and D. Yap, “GaAs spiral optical waveguides for delay-line applications,” J. Lightwave Technol. 11, 523-528(1993). [CrossRef]
  4. X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. Hao, J. Yang, and M. Wang, “Loss crosstalk 1×2 thermooptic digital optical switch with integrated S-bend attenuator,” IEEE Photon. Technol. Lett. 18, 610-612 (2006). [CrossRef]
  5. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130-132 (1978). [CrossRef]
  6. E. C. M. Pennings, G. H. Manhoudt, and M. K. Smit, “Low-loss bends in planar optical ridge waveguides,” Electron. Lett. 24, 998-999 (1988). [CrossRef]
  7. V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15, 990-997 (1997). [CrossRef]
  8. M. Rajarajan, S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikathi, “Characterization of low-loss waveguide bends with offset optimisation for compact photonic integrated circuits,” IEE Proc.-Optoelectron. 147, 382-388 (2000). [CrossRef]
  9. J. C. Powelson, W. Feng, S. Lin, R. J. Feuerstein, and D. Tomic, “Crosstalk of passive directional couplers,” J. Lightwave Technol. 16, 2020-2027 (1998). [CrossRef]
  10. C. Yeung, T. Rozzi, and G. Cerri, “Crosspolarisation coupling in curved dielectric rib waveguides,” IEE Proc.-Optoelectron. 135, 281-284 (1988). [CrossRef]
  11. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8, 1346-1348 (1996). [CrossRef]
  12. W. W. Lui, T. Hirono, K. Yokoyama, and W. P. Huang, “Polarization rotation in semiconductor bending waveguides: a coupled-mode theory formulation,” J. Lightwave Technol. 16, 929-936 (1998). [CrossRef]
  13. B. E. Little and S. T. Chu, “Theory of polarization rotation and conversion in vertically coupled microresonators,” IEEE Photon. Technol. Lett. 12, 401-403 (2000). [CrossRef]
  14. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, “Improved design of a polarization converter based on semiconductor optical waveguide bends,” Appl. Opt. 40, 5395-5401 (2001). [CrossRef]
  15. N. Somasiri, B. M. A. Rahman, and S. S. A. Obayya, “Fabrication tolerance study of a compact passive polarization rotator,” J. Lightwave Technol. 20, 751-757 (2002). [CrossRef]
  16. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikathi, “Analysis of polarisation rotation in cascaded optical waveguide bends,” IEE Proc.-Optoelectron. 149, 75-80 (2002). [CrossRef]
  17. B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682-688 (1984). [CrossRef]
  18. B. M. A. Rahman and J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. 6, 52-57 (1988). [CrossRef]
  19. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, “New full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Lightwave Technol. 18, 409-415 (2000). [CrossRef]
  20. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).
  21. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220, (1976). [CrossRef]
  22. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75-83 (1975). [CrossRef]
  23. P. Bienstman, E. Six, M. Roelens, M. Vanwolleghem, and R Baets, “Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers,” IEEE Photon. Technol. Lett. 14, 164-166 (2002). [CrossRef]
  24. J. Gu, P. Besse, and H. Melchior, “Novel method for analysis of curved optical rib-waveguides,” Electron. Lett. 25, 278-280(1989). [CrossRef]
  25. R. Pregla, “The method of lines for analysis of dielectric waveguide bends,” J. Lightwave Technol. 14, 634-639 (1996). [CrossRef]
  26. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14, 2085-2092 (1996). [CrossRef]
  27. A. Nesterov and U. Troppenz, “A plane-wave boundary method for analysis of bent optical waveguides,” J. Lightwave Technol. 21, 2434-2437 (2003). [CrossRef]
  28. F. Wassmann, “Modal field analysis of circularly bent single-mode fibers,” J. Lightwave Technol. 17, 957-968 (1999). [CrossRef]
  29. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach,” Opt. Lett. 12, 296-298 (1987). [CrossRef] [PubMed]
  30. W. Berglund and A. Gopinath, “WKB analysis of bend losses in optical waveguides,” J. Lightwave Technol. 18, 1161-1166(2000). [CrossRef]
  31. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007). [CrossRef]
  32. R. Baets and P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am. 73, 177-182 (1983). [CrossRef]
  33. T. Yamamoto and M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by the finite-element method,” J. Lightwave Technol. 11, 1579-1583 (1993). [CrossRef]
  34. R. Jedidi and R. Pierre, “High-order finite-element method for the computation of bending loss in optical waveguides,” J. Lightwave Technol. 25, 2618-2630 (2007). [CrossRef]
  35. Y. Tsuji and M. Koshiba, “Complex modal analysis of curved optical waveguides using a full-vectorial finite element method with perfectly matched layer boundary conditions,” Electromagnetics 24, 39-48 (2004). [CrossRef]
  36. L. Prkna, M. Hubalek, and J. Ctyroky, “Field modelling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11, 217-223 (2005). [CrossRef]
  37. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  38. N. H. Vu, I-K. Hwang, and Y-H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33, 119-121 (2008). [CrossRef] [PubMed]
  39. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200(1994). [CrossRef]
  40. M. Rajarajan, S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikathi, “Design of compact optical bends with a trench by use of finite element and beam propagation methods,” Appl. Opt. 39, 4946-4953 (2000). [CrossRef]
  41. S. Tomlijenovic-Hanic, J. D. Love, and A. Ankiewicz, “Effect of additional layers on bend loss in buried channel waveguides,” IEE Proc.-Optoelectron. 150, 259-265 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited