OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 16 — Jun. 1, 2008
  • pp: 3023–3026

Continuous wave terahertz spectrometer as a noncontact thickness measuring device

Rafał Wilk, Falk Breitfeld, Martin Mikulics, and Martin Koch  »View Author Affiliations


Applied Optics, Vol. 47, Issue 16, pp. 3023-3026 (2008)
http://dx.doi.org/10.1364/AO.47.003023


View Full Text Article

Enhanced HTML    Acrobat PDF (2180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a low cost terahertz (THz) spectrometer with coherent detection based on two simple and robust dipole antennas driven by two laser diodes. The spectrometer covers frequencies up to 1 THz , with a peak signal-to-noise ratio exceeding 40 dB for a lock-in integration time of 30 ms . We demonstrate that the thickness profile of a sample can be reconstructed from an acquired THz image.

© 2008 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Spectroscopy

History
Original Manuscript: February 20, 2008
Revised Manuscript: April 28, 2008
Manuscript Accepted: May 2, 2008
Published: May 26, 2008

Citation
Rafał Wilk, Falk Breitfeld, Martin Mikulics, and Martin Koch, "Continuous wave terahertz spectrometer as a noncontact thickness measuring device," Appl. Opt. 47, 3023-3026 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-16-3023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002). [CrossRef] [PubMed]
  2. M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003). [CrossRef]
  3. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003). [CrossRef] [PubMed]
  4. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145-2153 (2003). [CrossRef]
  5. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007). [CrossRef]
  6. N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005). [CrossRef]
  7. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995). [CrossRef]
  8. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997). [CrossRef]
  9. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998). [CrossRef]
  10. A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999). [CrossRef]
  11. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998). [CrossRef]
  12. M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996). [CrossRef]
  13. R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007). [CrossRef]
  14. I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005). [CrossRef]
  15. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002). [CrossRef]
  16. M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005). [CrossRef]
  17. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited