OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 16 — Jun. 1, 2008
  • pp: 3053–3063

Dynamic schema for near infrared detection of pressure-induced changes in solid tumors

Bei Wang, Stephen P. Povoski, Xianhua Cao, Duxin Sun, and Ronald X. Xu  »View Author Affiliations


Applied Optics, Vol. 47, Issue 16, pp. 3053-3063 (2008)
http://dx.doi.org/10.1364/AO.47.003053


View Full Text Article

Enhanced HTML    Acrobat PDF (2570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Differentiation among malignant tumors, benign tumors, and normal tissue is highly important in the diagnosis and treatment of many malignancies. We have proposed a dynamic schema for noninvasive characterization of pressure-induced changes in solid tumors. Our hypothesis has been that the altered neovascularization processes within cancer-bearing tissues may significantly increase vascular resistance and cause a much slower response of hemoglobin concentration during a dynamic compression stimulus. This hypothesis was tested by the evaluation of data generated from human tumor clinical testing and from animal tumor model testing. In the human tumor clinical testing, a unified diagnostic criterion was derived that integrated the relative characteristics of tumor oxygen, hemoglobin, and hemoglobin dynamics. By applying such a unified criterion, we were able to differentiate benign breast lesions and malignant breast tumors with high sensitivity and specificity within a subset of 14 suspicious breast lesions with similar size and depth characteristics. In the animal testing, a stepped compression load was applied to the subcutaneous tumor deposit on an athymic NU/NU nude mouse model with subcutaneous xenograft BxPC-3 cancer. Characteristic differences were observed between the premortem tumor and the postmortem tumor in terms of pressure-induced tumor structural and functional changes.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 4, 2008
Revised Manuscript: April 20, 2008
Manuscript Accepted: May 5, 2008
Published: May 26, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Bei Wang, Stephen P. Povoski, Xianhua Cao, Duxin Sun, and Ronald X. Xu, "Dynamic schema for near infrared detection of pressure-induced changes in solid tumors," Appl. Opt. 47, 3053-3063 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-16-3053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hockel and P. Vaupel, “Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects,” J. Natl. Cancer Inst. 93, 266-276 (2001). [CrossRef] [PubMed]
  2. P. Vaupel, D. K. Kelleher, and O. Thews, “Modulation of tumor oxygenation,” Int. J. Radiat. Oncol. Biol. Phys. 42, 843-848(1998). [CrossRef] [PubMed]
  3. B. Dome, M. J. Hendrix, S. Paku, J. Tovari, and J. Timar, “Alternative vascularization mechanisms in cancer: pathology and therapeutic implications,” Am. J. Pathol. 170, 1-15 (2007). [CrossRef] [PubMed]
  4. D. M. McDonald and P. Baluk, “Significance of blood vessel leakiness in cancer,” Cancer Res. 62, 5381-5385 (2002). [PubMed]
  5. Y. Boucher, M. Leunig, and R. K. Jain, “Tumor angiogenesis and interstitial hypertension,” Cancer Res. 56, 4264-4266(1996). [PubMed]
  6. S. R. McDougall, A. R. Anderson, M. A. Chaplain, and J. A. Sherratt, “Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies,” Bull. Math. Biol. 64, 673-702(2002). [CrossRef] [PubMed]
  7. B. Gallez, C. Baudelet, and B. F. Jordan, “Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications,” NMR Biomed. 17, 240-262 (2004). [CrossRef] [PubMed]
  8. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349 (2003). [CrossRef] [PubMed]
  9. R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Exp. Rev. Med. Dev. 4, 83-95 (2007). [CrossRef]
  10. S. Fantini, E. Heffer, H. Siebold, and O. Schutz, “Using near-infrared light to detect breast cancer,” Opt. Photon. News 14(11), 24-29 (2003). [CrossRef]
  11. Q. Zhu, E. Conant, and B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J Biomed. Opt. 5, 229-236 (2000). [CrossRef] [PubMed]
  12. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005). [CrossRef] [PubMed]
  13. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  14. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  15. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  16. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34-40 (1995). [CrossRef]
  17. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98, 4420-4425 (2001). [CrossRef] [PubMed]
  18. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “The role of diffuse optical spectroscopy in the clinical management of breast cancer,” Dis. Markers 19, 95-105 (2003).
  19. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J Biomed. Opt. 9, 534-540 (2004). [CrossRef] [PubMed]
  20. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  21. Y. Gu, V. A. Bourke, J. G. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960-2967 (2003). [CrossRef] [PubMed]
  22. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005). [CrossRef] [PubMed]
  23. X. Cheng and X. Xu, “Study of the pressure effect in near infrared spectroscopy,” Proc. SPIE 4955, 397-406 (2003). [CrossRef]
  24. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212-1214 (2003). [CrossRef] [PubMed]
  25. R. X. Xu, S. P. Povoski, L. D. Yee, J. O. Olsen, B. Qiang, and J. M. Mao, “Near infrared/ultrasound dual modal imaging for breast cancer detection,” Proc. SPIE 6081, 44-53 (2006).
  26. H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156, 1363-1380 (2000). [CrossRef] [PubMed]
  27. C. Pozrikidis and D. A. Farrow, “A model of fluid flow in solid tumors,” Ann. Biomed. Eng. 31, 181-194 (2003). [CrossRef] [PubMed]
  28. E. K. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943-950(1996). [CrossRef]
  29. H. Shangguan, S. Prahl, S. Jacques, L. Casperson, and K. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366-371 (1998). [CrossRef]
  30. S. A. Carp, T. Kauffman, Q. Fang, E. A. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006). [CrossRef]
  31. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, 2005). [CrossRef]
  32. R. X. Xu, B. Qiang, J. J. Mao, and S. P. Povoski, “Development of a handheld near infrared imager for dynamic characterization of in vivo biological tissue systems,” Appl. Opt. 46, 7442-7451 (2007). [CrossRef] [PubMed]
  33. R. Xu, D. Young, J. Mao, and S. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007). [CrossRef] [PubMed]
  34. M. J. Leahy, F. F. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7, 143-162 (1999). [PubMed]
  35. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121-4136 (2007). [CrossRef] [PubMed]
  36. C. Jackowski, M. Thali, E. Aghayev, K. Yen, M. Sonnenschein, K. Zwygart, R. Dirnhofer, and P. Vock, “Postmortem imaging of blood and its characteristics using MSCT and MRI,” Int. J. Legal Med. 120, 233-240 (2006). [CrossRef]
  37. P. Wellman, R. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Tech. Rep. (Harvard BioRobotics Laboratory, 1999).
  38. C. Verschraegen, V. Vinh-Hung, G. Cserni, R. Gordon, M. E. Royce, G. Vlastos, P. Tai, and G. Storme, “Modeling the effect of tumor size in early breast cancer,” Ann. Surg. 241, 309-318 (2005). [CrossRef] [PubMed]
  39. E. E. Voest and P. A. D'Amore, Tumor Angiogenesis and Microcirculation (Marcel-Dekker, 2001).
  40. S. E. Lee, S. K. Hong, B. K. Han, J. H. Yu, J. H. Han, S. J. Jeong, S. S. Byun, Y. H. Park, and G. Choe, “Prognostic significance of tumor necrosis in primary transitional cell carcinoma of upper urinary tract,” Jpn. J. Clin. Oncol. 37, 49-55 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited