OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 17 — Jun. 10, 2008
  • pp: 3196–3202

High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers

Astrid van der Horst, Peter D.J. van Oostrum, Alexander Moroz, Alfons van Blaaderen, and Marileen Dogterom  »View Author Affiliations

Applied Optics, Vol. 47, Issue 17, pp. 3196-3202 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1901 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the simultaneous trapping of multiple high-refractive index ( n > 2 ) particles in a dynamic array of counterpropagating optical tweezers in which the destabilizing scattering forces are canceled. These particles cannot be trapped in single-beam optical tweezers. The combined use of two opposing high-numerical aperture objectives and micrometer-sized high-index titania particles yields an at least threefold increase in both axial and radial trap stiffness compared to silica particles under the same conditions. The stiffness in the radial direction is obtained from measured power spectra; calculations are given for both the radial and the axial force components, taking spherical aberrations into account. A pair of acousto-optic deflectors allows for fast, computer-controlled manipulation of the individual trapping positions in a plane, while the method used to create the patterns ensures the possibility of arbitrarily chosen configurations. The manipulation of high-index particles finds its application in, e.g., creating defects in colloidal photonic crystals and in exerting high forces with low laser power in, for example, biophysical experiments.

© 2008 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.1040) Optical devices : Acousto-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 6, 2007
Revised Manuscript: May 1, 2008
Manuscript Accepted: May 2, 2008
Published: June 5, 2008

Virtual Issues
Vol. 3, Iss. 7 Virtual Journal for Biomedical Optics

Astrid van der Horst, Peter D. J. van Oostrum, Alexander Moroz, Alfons van Blaaderen, and Marileen Dogterom, "High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers," Appl. Opt. 47, 3196-3202 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795-799(1996). [CrossRef] [PubMed]
  4. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270-2272 (2004). [CrossRef] [PubMed]
  5. W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photorefractive phase conjugation,” J. Opt. Soc. Am. B 14, 697-704 (1997). [CrossRef]
  6. W. Grange, S. Husale, H.-J. Güntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73, 2308-2316 (2002). [CrossRef]
  7. A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15, 11629-11639 (2007). [CrossRef] [PubMed]
  8. J. P. Hoogenboom, D. J. L. Vossen, C. Faivre-Moskalenko, M. Dogterom, and A. van Blaaderen, “Patterning surfaces with colloidal particles using optical tweezers,” Appl. Phys. Lett. 80, 4828-4830 (2002). [CrossRef]
  9. K. Svoboda and S. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285(1994). [CrossRef] [PubMed]
  10. P. A. Maia Neto and H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  11. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003). [CrossRef]
  12. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mozolli, P. A. Maia Neto, and H. M. Nussenzveig. “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914(2007). [CrossRef]
  13. D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75, 2960-2970 (2004). [CrossRef]
  14. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  15. J. Baumgartl and C. Bechinger., “On the limits of digital microscopy,” Europhys. Lett. 71, 487-493 (2005). [CrossRef]
  16. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074-1085(1998). [CrossRef] [PubMed]
  17. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829-3836 (1991). [CrossRef]
  18. A. C. Dogariu and R. Rajagopalan, “Optical traps as force transducers: the effects of focusing the trapping beam through a dielectric interface,” Langmuir 16, 2770-2778 (2000). [CrossRef]
  19. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507(2002). [CrossRef] [PubMed]
  20. The code to calculate the axial forces is freely available on www.wave-scattering.com and as supplementary material to this paper.
  21. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351-1355 (1977). [CrossRef]
  22. A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101-13106(2006). [CrossRef] [PubMed]
  23. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “Three-dimensional forces in GPC-based counterpropagating-beam traps,” Opt. Express 14, 5812-5822 (2006). [CrossRef] [PubMed]
  24. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mozolli, and P. A. Maia Neto, “Characterization of objective transmittance for optical tweezers,” Appl. Opt. 45, 4263-4269 (2006). [CrossRef] [PubMed]
  25. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1604 KB)     
» Media 2: AVI (12639 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited