OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: D12–D20

High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms

Dayong Wang, Jie Zhao, Fucai Zhang, Giancarlo Pedrini, and Wolfgang Osten  »View Author Affiliations


Applied Optics, Vol. 47, Issue 19, pp. D12-D20 (2008)
http://dx.doi.org/10.1364/AO.47.000D12


View Full Text Article

Enhanced HTML    Acrobat PDF (1658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cascaded Fresnel algorithm for the flexible reconstruction of digital holograms is proposed. Since the fast-Fourier-transform-based numerical realization of the Fresnel integral shows a dependency of its pixel resolution and its computation window size on the propagation distance different from that of the corresponding physical system, the computation window can be smaller than the actual physical diffraction field in the intermediate plane. Consequently, distortions in the final reconstruction may occur. A method is proposed to eliminate such distortion. The validity of this method is shown by both numerical simulations and experimental results.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.2880) Holography : Holographic interferometry
(110.1650) Imaging systems : Coherence imaging
(090.1995) Holography : Digital holography

History
Original Manuscript: October 15, 2007
Manuscript Accepted: November 20, 2007
Published: January 17, 2008

Citation
Dayong Wang, Jie Zhao, Fucai Zhang, Giancarlo Pedrini, and Wolfgang Osten, "High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms," Appl. Opt. 47, D12-D20 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D12


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  2. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (Plenum, 1980).
  3. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  4. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
  6. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999). [CrossRef]
  7. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215-217 (2000). [CrossRef]
  8. A. Dakoff, J. Gass, and M. K. Kim, "Microscopic three-dimensional imaging by digital interference holography," J. Electron. Imaging 12, 643-647 (2003). [CrossRef]
  9. P. Ferraro, G. Coppola, S. DeNicola, A. Finizio, G. Pierattini, and D. Alfieri, "Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004). [CrossRef] [PubMed]
  10. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  11. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  12. F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, "Characterization of microlenses by digital holographic microscopy," Appl. Opt. 45, 829-835 (2006). [CrossRef] [PubMed]
  13. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000). [CrossRef]
  14. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  15. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, "A digital holographic microscope for complete characterization of microelectromechanical systems," Meas. Sci. Technol. 15, 529-539 (2004). [CrossRef]
  16. T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, "Remote metrology by comparative digital holography," Appl. Opt. 45, 925-934 (2006). [CrossRef] [PubMed]
  17. A. Sten and B. Javidi, "Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope," J. Opt. Soc. Am. A 24, 163-168 (2007). [CrossRef]
  18. D. Mendlovic, Z. Zalevsky, and N. Konforti, "Computation considerations and fast algorithms for calculating the diffraction integral," J. Mod. Opt. 44, 407-414 (1997). [CrossRef]
  19. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction pattern calculation," Opt. Commun. 164, 233-245 (1999). [CrossRef]
  20. Y. M. Engelberg and S. Ruschin, "Fast method for physical optics propagation of high-numerical-aperture beams," J. Opt. Soc. Am. A 21, 2135-2145 (2004). [CrossRef]
  21. T. M. Kreis, M. Adams, and W. P. O. Jüptner, "Methods of digital holography: a comparison," Proc. SPIE 3098, 224-233 (1997). [CrossRef]
  22. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
  23. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]
  24. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003). [CrossRef] [PubMed]
  25. P. Ferraro, G. Coppola, D. Alfieri, S. De Nicola, A. Finizio, and G. Pierattini, "Controlling image parameters in the reconstruction process of digital holograms," IEEE J. Sel. Top. Quantum Electron. 10, 829-839 (2004). [CrossRef]
  26. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004). [CrossRef] [PubMed]
  27. L. Yu and M. K. Kim, "Pixel resolution control in numerical reconstruction of digital holography," Opt. Lett. 31, 897-899 (2006). [CrossRef] [PubMed]
  28. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 45-67.
  29. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, "Imaging analysis of digital holography," Opt. Express 13, 2444-2452 (2005). [CrossRef] [PubMed]
  30. A. Sten and B. Javidi, "Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields," J. Opt. Soc. Am. A 23, 1227-1235 (2006). [CrossRef]
  31. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, "Shifted Fresnel diffraction for computational holography," Opt. Express 15, 5631-5640 (2007). [CrossRef] [PubMed]
  32. F. Zhang, G. Pedrini, and W. Osten, "Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution," Opt. Lett. 31, 1633-11635 (2006). [CrossRef] [PubMed]
  33. F. Shen and A. Wang, "Fast-Fourier-transform-based numerical integration method for the Rayleigh-Sommerfeld diffraction formula," Appl. Opt. 45, 1102-1110 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited