OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 19 — Jul. 1, 2008
  • pp: D154–D163

Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation

Zeev Zalevsky, Ofer Margalit, Emanuel Vexberg, Roy Pearl, and Javier Garcia  »View Author Affiliations

Applied Optics, Vol. 47, Issue 19, pp. D154-D163 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (11928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present two approaches for extracting the surface profile as well as obtaining 3D imaging of near field objects by usage of partial coherence and digital holography. In the first approach a light source with given temporal partial coherence is used to illuminate a near field object. The reflected light is interfered with the reference source. By computing the local contrast of the generated fringes one may estimate the 3D topography and the profile of the object. This approach extracts the 3D information from a single image, and its accuracy does not depend on triangulation angle like in fringe projection methods. The second approach is tomography based. There we illuminate the object from several slightly different angles, and for each we compute the wrapped phase using digital holography techniques. Combining the wrapped phase estimation from several points of projection allows calculating the unwrapped phase and therefore the true profile of even a phase-only object. Increasing the number of points of view decreases the relative error of the estimated profile.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(150.6910) Machine vision : Three-dimensional sensing
(090.1995) Holography : Digital holography
(110.5086) Imaging systems : Phase unwrapping

Original Manuscript: September 27, 2007
Revised Manuscript: March 8, 2008
Manuscript Accepted: March 12, 2008
Published: April 22, 2008

Zeev Zalevsky, Ofer Margalit, Emanuel Vexberg, Roy Pearl, and Javier Garcia, "Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation," Appl. Opt. 47, D154-D163 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1991), pp. 552-558.
  2. R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 29, 318(1999). [CrossRef]
  3. “Height recovery from intensity gradients,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1994), pp. 508-513 .
  4. B. K. P. Horn, “Height and gradient from shading,” Int. J. Comput. Vis. 5, 37-76 (1990). [CrossRef]
  5. A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988). [CrossRef]
  6. M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.
  7. M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988). [CrossRef]
  8. S. Winkelbach and F. M. Wahl, “Shape from single stripe pattern illumination,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 240-247. [CrossRef]
  9. T. P. Koninckx and L. Van Gool, “Efficient, active 3D acquisition, based on a pattern-specific snake,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 557-565. [CrossRef]
  10. R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997). [CrossRef]
  11. G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002). [CrossRef]
  12. L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.
  13. P. Besl, “Active optical range imaging sensors,” Mach. Vision Applications 1, 127-152 (1988). [CrossRef]
  14. E. Horn and N. Kiryati, “Toward optimal structured light patterns,” presented at the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997.
  15. T. Sawatari,, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt. 15, 2821-2827(1976). [CrossRef] [PubMed]
  16. G. Hausler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7170(1993). [CrossRef] [PubMed]
  17. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1312 (1994). [CrossRef] [PubMed]
  18. D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).
  19. D. Gabor, “Microscopy by reconstructed wave fronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949). [CrossRef]
  20. E. N. Leith, “Overview of the development of holography” J. Imaging Sci. Technol. 41, 201-204 (1997).
  21. E. N. Leith and J. Upatnieks, “Wavefront reconstruction and communication theory,” J. Opt. Soc. Am. 52, 1123-1130(1962). [CrossRef]
  22. Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave fields of its scattered radiation,” Opt. Spectrosc. 15, 279-284 (1964).
  23. R. V. Pole, “3-D imaging and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967). [CrossRef]
  24. A. Stern and B. Javidi, “Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,” J. Opt. Soc. Am. A 23, 1227-1235 (2006). [CrossRef]
  25. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  26. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006). [CrossRef]
  27. C. Mann, L. Yu, C. -M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  29. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  30. I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  31. J. H. Bruning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  32. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Opt. Express 13, 1885-1891 (2005). [CrossRef] [PubMed]
  33. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002). [CrossRef] [PubMed]
  34. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  35. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  36. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  37. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). [CrossRef] [PubMed]
  38. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005). [CrossRef] [PubMed]
  39. V. Mico, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007). [CrossRef] [PubMed]
  40. J. Rosen and A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. A 13, 2091-2095 (1996). [CrossRef]
  41. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991). [CrossRef] [PubMed]
  42. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999). [CrossRef]
  43. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005). [CrossRef] [PubMed]
  44. G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001). [CrossRef]
  45. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  46. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013(2006). [CrossRef] [PubMed]
  47. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173(2008). [CrossRef] [PubMed]
  48. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992). [CrossRef] [PubMed]
  49. H. Stark and H. Peng, “Shape estimation in computer tomography from minimal data,” J. Opt. Soc. Am. A 5, 331-337(1988). [CrossRef] [PubMed]
  50. T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007). [CrossRef]
  51. B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007). [CrossRef] [PubMed]
  52. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31, 2759-2761 (2006). [CrossRef] [PubMed]
  53. M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited