OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 20 — Jul. 10, 2008
  • pp: 3609–3618

Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens

Euan McLeod and Craig B. Arnold  »View Author Affiliations

Applied Optics, Vol. 47, Issue 20, pp. 3609-3618 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2974 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.

© 2008 Optical Society of America

OCIS Codes
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(080.2710) Geometric optics : Inhomogeneous optical media
(140.3300) Lasers and laser optics : Laser beam shaping
(230.1040) Optical devices : Acousto-optical devices

ToC Category:
Optical Devices

Original Manuscript: March 25, 2008
Revised Manuscript: May 28, 2008
Manuscript Accepted: May 29, 2008
Published: July 7, 2008

Euan McLeod and Craig B. Arnold, "Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens," Appl. Opt. 47, 3609-3618 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  2. Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys. 53, 537-624 (2003). [CrossRef]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  4. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239-245 (2001). [CrossRef]
  5. V. Garces-Chavez, K. V. Sepulveda, S. C. Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002). [CrossRef]
  6. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemnek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  7. J. Amako, D. Sawaki, and E. Fujii, “Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics,” J. Opt. Soc. Am. B 20, 2562-2568 (2003). [CrossRef]
  8. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423-430 (2006). [CrossRef]
  9. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a tag lens in the near UV,” Appl. Phys. A (in press).
  10. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653-6657 (1992). [CrossRef] [PubMed]
  11. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245(2002). [CrossRef]
  12. P. Dufour, M. Pich, Y. de Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246-9252 (2006). [CrossRef] [PubMed]
  13. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401-1405 (1993). [CrossRef] [PubMed]
  14. V. Magni, “Optimum beam for second harmonic generation,” Opt. Commun. 176, 245-251 (2000). [CrossRef]
  15. T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, and R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-induced propagation,” Appl. Opt. 38, 3152-3156 (1999). [CrossRef]
  16. K. Wang, L. Zeng, and C. Yin, “Influence of the incident wavefront on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99-103(2003). [CrossRef]
  17. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708-2713 (1992). [CrossRef] [PubMed]
  18. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150-152(1989). [CrossRef]
  19. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  20. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959-3962(1988). [CrossRef] [PubMed]
  21. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748-1754 (1989). [CrossRef] [PubMed]
  22. W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362-2364 (1998). [CrossRef]
  23. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32, 6368-6370 (1993). [CrossRef] [PubMed]
  24. J. A. Davis, E. Carcole, and D. M. Cottrell, “Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator,” Appl. Opt. 35, 593-598 (1996). [CrossRef] [PubMed]
  25. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155-3157 (2006). [CrossRef] [PubMed]
  26. C. B. Arnold and E. McLeod, “A new approach to adaptive optics for materials processing,” Photonics Spectra 41, 78-84(2007).
  27. K. A. Higginson, M. A. Costolo, and E. A. Rietman, “Tunable optics derived from nonlinear acoustic effects,” J. Appl. Phys. 95, 5896-5904 (2004). [CrossRef]
  28. E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102, 033104 (2007). [CrossRef]
  29. T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006). [CrossRef]
  30. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870-5876 (2007). [CrossRef] [PubMed]
  31. The thin lens approximation is valid for our system because the deflection that a ray experiences when traveling through the lens is <50 μm, which is much smaller than the acoustic wavelength within the lens, which is on the order of a few millimeters.
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005.
  33. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High speed varifocal lens using a tunable acoustic gradient index of refraction lens,” Opt. Lett. (to be published). [PubMed]
  34. E. McLeod and C. B. Arnold, “Complex beam sculpting with tunable acoustic gradient index lenses,” Proc. SPIE 6483, 64830I (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited