OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3694–3700

Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies

Bowen Wang, Yi Jin, and Sailing He  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3694-3700 (2008)
http://dx.doi.org/10.1364/AO.47.003694


View Full Text Article

Enhanced HTML    Acrobat PDF (8954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A subwavelength corrugated metal waveguide is studied and designed to slow down the light at terahertz frequencies. The waveguide consists of two parallel thin metal slabs with periodic corrugations on their inner boundaries. Compared with structures based on engineered surface plasmons, the proposed structure has smaller group velocity dispersion and lower propagation loss. The origin of the slow wave is also explained.

© 2008 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.3910) Physical optics : Metal optics
(040.2235) Detectors : Far infrared or terahertz
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: April 1, 2008
Revised Manuscript: June 13, 2008
Manuscript Accepted: June 20, 2008
Published: July 11, 2008

Citation
Bowen Wang, Yi Jin, and Sailing He, "Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies," Appl. Opt. 47, 3694-3700 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Jacobson, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011-2013 (1996). [CrossRef]
  2. Q. Chen, Z. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122-1124 (2000). [CrossRef]
  3. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer wave layers,” Opt. Lett. 29, 1617-1619 (2004). [CrossRef] [PubMed]
  4. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999). [CrossRef]
  5. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  6. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  7. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber,” Appl. Phys. Lett. 76, 1987-1989(2000). [CrossRef]
  8. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  9. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846-848 (2001). [CrossRef]
  10. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wireless Compon. Lett. 11, 444-446 (2001). [CrossRef]
  11. R. Mendis and D. Grischkowsky, “A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics,” Appl. Phys. Lett. 83, 3656-3658 (2003). [CrossRef]
  12. K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305-307 (2004). [CrossRef]
  13. K. Wang and D. M. Mittleman, “Metal wires for THz wave guiding,” Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  14. T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  16. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119 (1950). [CrossRef]
  17. R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2, 71-81 (1954).
  18. W. Rotman, “A study of single surface corrugated guides,” Proc. IRE 39, 952-959 (1951). [CrossRef]
  19. R. Kompfner, “Travelling-wave tubes,” Rep. Prog. Phys. 15275-327 (1952). [CrossRef]
  20. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  21. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  22. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett. 87, 051101(2005). [CrossRef]
  23. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12, 5723-5728(2004). [CrossRef] [PubMed]
  24. G. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quirogab, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett. 89, 211119 (2006). [CrossRef]
  25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  26. E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic, 1998).
  27. A. Taflove, Computational Electrodynamics-The Finite Difference Time-Domain Method (Artech House, 1995).
  28. A. Sa¨yna¨tjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323 (2007). [CrossRef]
  29. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  30. V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal,” Phys. Rev. B 55, 4298-4311(1997). [CrossRef]
  31. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327(2005). [CrossRef] [PubMed]
  32. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited