OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 21 — Jul. 20, 2008
  • pp: 3751–3759

Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging

Lin Ma and Weiwei Cai  »View Author Affiliations


Applied Optics, Vol. 47, Issue 21, pp. 3751-3759 (2008)
http://dx.doi.org/10.1364/AO.47.003751


View Full Text Article

Enhanced HTML    Acrobat PDF (2002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the simultaneous tomographic reconstruction of temperature and species concentration using hyperspectral absorption spectroscopy. Previous work on absorption tomography has relied on a small number of wavelengths, resulting in the requirement of a large number of projections and limited measurement capability. Here we develop a tomographic inversion method to exploit the increased spectral information content enabled by recent advancement in laser technologies. The simulation results clearly demonstrate that the use of hyperspectral absorption data significantly reduces the number of projections, enables simultaneous mapping of temperature and species concentration, and provides more stable reconstruction compared with traditional absorption tomographic techniques.

© 2008 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption

ToC Category:
Image Processing

History
Original Manuscript: November 13, 2007
Manuscript Accepted: June 10, 2008
Published: July 11, 2008

Citation
Lin Ma and Weiwei Cai, "Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging," Appl. Opt. 47, 3751-3759 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-21-3751


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  3. K. Kohse-Hoinghaus and J. B. Jeffries, Applied combustion diagnostics (Taylor & Francis, 2002).
  4. P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980). [CrossRef]
  5. M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988). [CrossRef]
  6. H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131-136 (1985). [CrossRef]
  7. K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492-5500 (1995).
  8. B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004). [CrossRef]
  9. M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).
  10. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005). [CrossRef]
  11. A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996). [CrossRef]
  12. A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998). [CrossRef]
  13. J. A. Silver, D. J. Kane, and P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787-2801 (1995).
  14. F. Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-964 (2001). [CrossRef]
  15. F. Y. Zhang, K. Komurasaki, T. Iida, and T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814-1822 (1999). [CrossRef]
  16. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004). [CrossRef]
  17. F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000). [CrossRef]
  18. C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003). [CrossRef]
  19. W. Verkruysse and L. A. Todd, “Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling,” Env. Sci. Technol. 39, 2247-2254 (2005). [CrossRef]
  20. L. A. Todd and R. Bhattacharyya, “Tomographic reconstruction of air pollutants: evaluation of measurement geometries,” Appl. Opt. 36, 7678-7688 (1997). [CrossRef]
  21. S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000). [CrossRef]
  22. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005). [CrossRef]
  23. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).
  24. J. W. Walewski and S. T. Sanders, “Rapid wavelength scans over one octave and application to laser-induced fluorescence,” Opt. Lett. 30, 2394-2396 (2005). [CrossRef]
  25. M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt. 32, 6104-6116 (1993).
  26. F. Wübbeling and F. Natterer, Mathematical Methods in Image Reconstruction (SIAM, 2007).
  27. F. Natterer, “The mathematics of computerized tomography,” SIAM Classics in Applied Mathematics Series (SIAM, 2001).
  28. M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  29. A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997). [CrossRef]
  30. E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999). [CrossRef]
  31. L. Ma and W. Cai, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, are preparing a manuscript to be called “Determine the optimal regularization parameters in hyperspectral tomography.”
  32. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987). [CrossRef]
  33. P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind,” Inverse Probl. 8, 849-872 (1992). [CrossRef]
  34. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003). [CrossRef]
  35. C. T. Herman, Image Reconstruction from Projections--the Fundamentals of Computerized Tomography (Academic, 1980).
  36. I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006). [CrossRef]
  37. F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited