OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 22 — Aug. 1, 2008
  • pp: E44–E52

Phase-space evolution of x-ray coherence in phase-sensitive imaging

Xizeng Wu and Hong Liu  »View Author Affiliations


Applied Optics, Vol. 47, Issue 22, pp. E44-E52 (2008)
http://dx.doi.org/10.1364/AO.47.000E44


View Full Text Article

Enhanced HTML    Acrobat PDF (1866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: February 4, 2008
Revised Manuscript: April 24, 2008
Manuscript Accepted: April 25, 2008
Published: May 15, 2008

Citation
Xizeng Wu and Hong Liu, "Phase-space evolution of x-ray coherence in phase-sensitive imaging," Appl. Opt. 47, E44-E52 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-22-E44


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast micro-imaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486-5492 (1995). [CrossRef]
  2. A. Momose, T. Takeda, and Y. Itai, “Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,” Rev. Sci. Instrum. 66, 1434-1436 (1995). [CrossRef]
  3. S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase contrast imaging using polychromatic hard x-ray,” Nature 384, 335-338 (1996). [CrossRef]
  4. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D Appl. Phys. 29, 133-146 (1996).
  5. F. Arfelli, and V. Bonvicini, A. Bravin,G. Cantatore, E. Castelli,, L. Dalla Palma, M. Di Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, and A. Vacchi, “Mammography with synchrotron radiation: phase-detected techniques,” Radiology (Oak Brook, Ill.) 215, 286-293 (2000).
  6. C. Kotre and I. Birch, “Phase contrast enhancement of x-ray mammography: a design study,” Phys. Med. Biol. 44, 2853-2866 (1999). [CrossRef]
  7. E. Donnelly and R. Price, “Effect of kVp on edge-enhancement index in phase-contrast radiography,” Med. Phys. 29, 999-1002 (2002). [CrossRef]
  8. X.Wu and H. Liu, “A general formalism for x-ray phase contrast imaging,” J. X-Ray Sci. Technol. 11, 33-42 (2003).
  9. X. Wu and H. Liu, “Clarification of aspects in in-line phase-sensitive x-ray imaging,” Med. Phys. 34, 737-743 (2007) [CrossRef]
  10. R. G. Littlejohn, “The semiclassical evolution of wave packets,” Phys. Rep. 138, 193-291 (1986). [CrossRef]
  11. M. Bastiaans,“Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1238 (1986).
  12. X. Wu and H. Liu, “A new theory of phase-contrast x-ray imaging based on Wigner distributions,” Med. Phys. 31, 2378-2384 (2004). [CrossRef]
  13. X. Wu and H. Liu, “A phase-space formulation for phase-contrast X-ray imaging,” Appl. Opt. 44, 5847-5854 (2005). [CrossRef]
  14. M. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73, 1434-1441 (1983).
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. J. Goodman, Statistical Optics (Wiley,1985).
  17. R. Coisson, “Spatial coherence of synchrotron radiation,” Appl. Opt. 34, 904-908 (1995).
  18. J. Guigay, “Fourier transform analysis of Fresnel diffraction and in-line holograms,” Optik (Jena) 49, 121-125 (1977).
  19. K. Nugent, T. Gureyev, D. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961-2965 (1996). [CrossRef]
  20. A. Pogany, D. Gao, and S. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774-2782 (1997). [CrossRef]
  21. T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase contrast imaging with multienergy X-rays,” Phys. Rev. Lett. 86, 5827-5830(2001) [CrossRef]
  22. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32, 1617-1619 (2007) [CrossRef]
  23. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42, L866-L868 (2003). [CrossRef]
  24. T. Weitkamp, A. Daiz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296-6304 (2005). [CrossRef]
  25. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45, 5254-5262 (2006). [CrossRef]
  26. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray source,” Nature Phys. 2, 258-261 (2006). [CrossRef]
  27. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134-137 (2008). [CrossRef]
  28. J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “ The partial Talbot effect and its use in measuring the coherence of synchrotron x-rays,” J. Synchrotron Radiat. 11, 476-482 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited