OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 23 — Aug. 10, 2008
  • pp: 4212–4220

All-fiber, low-cost single-point and quasi-distributed evanescent field temperature sensors with extended temperature measurement range, based on standard telecommunication graded index fibers

Marko Kezmah and Denis Donlagic  »View Author Affiliations

Applied Optics, Vol. 47, Issue 23, pp. 4212-4220 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5961 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber-optic single-point and quasi-distributed evanescent temperature sensors recoated with a blend of poly(methyl methacrylate) and poly(vinylidene fluoride) are proposed. Solid cladding enables the cons truction of small-size, low-cost, relatively wide-range and fast-response temperature sensors. The diameter of the sensor does not exceed the dimensions of the original optical fiber, while the response time of the sensor is 7.4 ms . Different mass ratios of polymers in the blend enable fine tuning of the applied cladding’s refractive index. This allows the construction of sensors for different temperature ranges, while the application of all-silica graded-index multimode fibers enables the construction of quasi- distributed sensor systems with considerably reduced cross talk.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.7000) Instrumentation, measurement, and metrology : Transmission
(160.5470) Materials : Polymers
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 28, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 17, 2008
Published: August 4, 2008

Marko Kezmah and Denis Donlagic, "All-fiber, low-cost single-point and quasi-distributed evanescent field temperature sensors with extended temperature measurement range, based on standard telecommunication graded index fibers," Appl. Opt. 47, 4212-4220 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988). [CrossRef]
  2. C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003). [CrossRef]
  3. V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004). [CrossRef]
  4. H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002). [CrossRef]
  5. D. Donlagic and M. Lesic, “All-fiber quasi-distributed polarimetric temperature sensor,” Opt. Express 14, 10245-10254(2006). [CrossRef] [PubMed]
  6. Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272, 227-237 (2007). [CrossRef]
  7. K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002). [CrossRef]
  8. X. K. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27, 1388-1390 (2002). [CrossRef]
  9. FISO Technologies Inc., “FOT HERO temperature sensor,” http://www.fiso.com/modules/AxialRealisation/img_repository/files/documents/2007/MC-00008%20R12_PDS_FOT-HERO.pdf.
  10. Acreo AB, “High temperature FBG sensors,” http://www.acreo.se/templates/Page____1013.aspx.
  11. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003). [CrossRef]
  12. G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001). [CrossRef]
  13. G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000). [CrossRef]
  14. M. Gottlieb and G. B. Brandt, “Temperature sensing in optical fibers using cladding and jacket loss effects,” Appl. Opt. 20, 3867-3873 (1981). [CrossRef] [PubMed]
  15. S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005). [CrossRef]
  16. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000). [CrossRef]
  17. S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, “Tapered single-mode fibers: external refractive-index dependence,” Appl. Opt. 25, 2468-2469 (1986). [CrossRef] [PubMed]
  18. W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004). [CrossRef]
  19. M. Kezmah and D. Donlagic, “Multimode all-fiber quasi-distributed refractometer sensor array and cross-talk mitigation,” Appl. Opt. 46, 4081-4091 (2007). [CrossRef] [PubMed]
  20. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005). [CrossRef]
  21. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289-7292 (1998). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited