OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 25 — Sep. 1, 2008
  • pp: 4579–4588

Single-angle-of-incidence ellipsometry

Y. A. Zaghloul and A. R. M. Zaghloul  »View Author Affiliations

Applied Optics, Vol. 47, Issue 25, pp. 4579-4588 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce single angle-of-incidence (SAI) ellipsometry [U.S. patent application 20070024850 (14 July 2006)] as a technique to completely identify, i.e., totally characterize, film–substrate systems. We show that only one measurement of the ellipsometric function ρ at one angle of incidence and one wavelength is totally sufficient to determine the optical constant of the film N 1 , its thickness d, and the substrate’s optical constant N 2 . Obviously, it is also sufficient for characterizing only the film, determining N 1 and d, and for characterizing only the substrate, determining N 2 and d, as well as for characterizing only bare substrates. An inverse genetic algorithm (IGA) for complete identification is presented that is based on a physical condition of the transparent-film–absorbing-substrate system . This IGA is used to identify the film–substrate system in four separate cases. We show that removing the film thickness from the fitness function of the genetic algorithm and using the defined optimum population size to characterize the film reduces the computational effort from 20,000 to 69 fitness-function calculations; the number of calculations to characterize an absorbing layer is reduced from 80,000 to 180. This is a very significant reduction and is very welcome in real-time applications. An error analysis is presented that shows that the IGA is resilient to, not affected by, random experimental errors and that it gives very good results in the presence of both random and systematic errors of the ellipsometer system. Experimental results are given that also prove the robustness, stability, and high accuracy of the method. We present data only for the Si O 2 –Si film–substrate system, but the IGA works for any film–substrate system, physical or not.

© 2008 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 21, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: July 20, 2008
Published: August 28, 2008

Y. A. Zaghloul and A. R. M. Zaghloul, "Single-angle-of-incidence ellipsometry," Appl. Opt. 47, 4579-4588 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  2. S. C. Warnick and M. A. Dahleh, “Ellipsometry as a sensor technology for the control of deposition processes,” in Proceedings of the 37th IEEE Conference on Decision and Control (IEEE, 1998). Vol. 3, pp. 3162-3167.
  3. P. Drude, “Uber Oberflaechenschichten. I. Theil,” Ann. Phys. 272, 532-560 (1889). [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 2002).
  5. A. R. M. Zaghloul, “Ellipsometric function of a film-substrate system: applications to the design of reflection-type optical devices and to ellipsometry,” Ph.D. dissertation (University of Nebraska-Lincoln, 1975).
  6. M. M. Ibrahim and N. M. Bashara, “Parameter-correlation and computational considerations in multiple-angle ellipsometry,” J. Opt. Soc. Am. 61, 1622-1629 (1971).
  7. G. H. Bu-Abbud, N. M. Bashara, and John A. Woollam, “Variable wavelength, variable angle ellipsometry including a sensitivities correlation test,” Thin Solid Films 138, 27-41 (1986). [CrossRef]
  8. T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” J. Phys. D 32, R45-R56 (1999).
  9. K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films 313-314, 1-9 (1998). [CrossRef]
  10. G. E. Jellison, Jr., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313-314, 33-39 (1998).
  11. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and M. Gioti, “Muller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455-456, 43-49 (2004). [CrossRef]
  12. A. R. M. Zaghloul and Y. A. Zaghloul, “Complete system identification of film-substrate systems using single-angle-of-incidence ellipsometry: a fast genetic algorithm,” U.S. patent application 20070024850 (14 July 2006).
  13. P. C. Yip, Y.-H. Pao, S. R. LeClair, and K. G. Eyink, “A real-time evolutionary algorithm for the in-situ ellipsometer data analysis,” in Proceedings of the International Conference on Neural Information Processing (Springer, 1996), Vol. 2, pp. 827-831.
  14. Z. Meng, Q. Yang, P. C. Yip, K. G. Eyink, W. T. Taferner, and B. Igelnik, “Combined use of computational intelligence and materials data for on-line monitoring and control of MBE experiments,” Eng. Applic. Artif. Intell. 11, 587-595 (1998).
  15. G. Cormier and R. Boudreau, “Genetic algorithm for ellipsometric data inversion of absorbing layers,” J. Opt. Soc. Am. A 17, 129-134 (2000). [CrossRef]
  16. P. Zilong, L. Zuoyi, H. Yu, T. Liguo, and Y. Xiaofei, “Thickness and refractivity computation in ellipsometry measurement by genetic algorithm,” Proc. SPIE 4077 , 492-495 (2000).
  17. J. Leng, J. J. Sidorowich, and J. L. Opsal, “Multi-domain genetic algorithm (MDGA) and its applications to thin film metrology,” Proc. SPIE 4779, 132-138 (2002).
  18. A. Kudla, “Application of the genetic algorithms in spectroscopic ellipsometry,” Thin Solid Films 455-456, 804-808(2004). [CrossRef]
  19. R. M. A. Azzam, A. R. M. Zaghloul, N. M. Bashara, “Ellipsometric function of a film-substrate system: applications to the design of reflection-type optical devices and to ellipsometry,” J. Opt. Soc. Am. 65, 252-260 (1975).
  20. A. R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara, “An angle-of-incidence tunable SiOs-Si (film-substrate) reflection retarder for the UV mercury line ?=2537Å,” Opt. Commun. 14, 260-262 (1975).
  21. A. R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara, “Design of film-substrate single-reflection retarders,” J. Opt. Soc. Am. 65, 1043-1049 (1975).
  22. A. R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara, “SiO2-Si film-substrate single-reflection retarders for different mercury spectral lines,” Opt. Eng. 17, 180-184 (1978).
  23. A. R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara, “Inversion of the nonlinear equations of reflection ellipsometry on film-substrate systems,” Surf. Sci. 56, 87-96 (1976). [CrossRef]
  24. A. R. M. Zaghloul and R. M. A. Azzam, “Single-element rotating-polarizer ellipsometer for film-substrate systems,” J. Opt. Soc. Am. 67, 1286-1287 (1977); see also .
  25. A. R. M. Zaghloul, “Modified O'Bryan ellipsometer (MOE) for film-substrate systems,” Opt. Commun. 27, 1-3 (1978).
  26. A. R. M. Zaghloul and R. M. A. Azzam, “Single-element rotating-polarizer ellipsometer for film-substrate systems: psi-meter,” Surf. Sci. 96, 168-173 (1980). [CrossRef]
  27. A. R. M. Zaghloul, M. M. El-Bahy, and M. S. Abou-Seada, “Single-element rotating-polarizer (SERP) ellipsometer: film thickness determination,” Opt. Commun. 61, 363-368(1987).
  28. R. M. A. Azzam, A. R. M. Zaghloul, and N. M. Bashara, “Polarizer-surface-analyzer null ellipsometry for film-substrate systems,” J. Opt. Soc. Am. 65, 1464-1471 (1975).
  29. R. M. A. Azzam and A. R. M. Zaghloul, “Determination of the refractive index and film thickness of a transparent film on a transparent substrate from the angles of incidence of zero reflection-induced ellipticity,” Opt. Commun. 24, 351-354(1978).
  30. R. M. A. Azzam and A. R. M. Zaghloul, “Polarization-independent reflectance matching (PIRM)--a technique for the determination of the refractive index and thickness of transparent films,” J. Opt. (Paris) 8, 201-205 (1977). [CrossRef]
  31. J. L. Ord and B. L. Wills, “Computer-operated following ellipsometer,” App. Opt. 6, 1673-1677 (1967).
  32. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (North-Holland, 1977).
  33. D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” App. Opt. 14, 220-228 (1975).
  34. R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029-2062 (1990). [CrossRef]
  35. R. F. Cohn, J. W. Wagner, and J. Kruger, “Dynamic imaging microellipsometry: theory, system design, and feasibility demonstration,” App. Opt. 27, 4664-4671 (1988).
  36. D. E. Aspnes, “Analysis of semiconductor materials and structures by spectroellipsometry,” Proc. SPIE 946, 84-97(1988).
  37. A. Roseler, “Spectroscopic ellipsometry in the infrared,” Infrared Phys. 21, 349-355 (1981). [CrossRef]
  38. J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” SIAM J. Comput. 2, 88-105 (1973).
  39. These values are chosen so that the results could be compared with those of .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited