OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 28 — Oct. 1, 2008
  • pp: F107–F113

Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array

Paul G. Lucey, Keith A. Horton, and Tim Williams  »View Author Affiliations


Applied Optics, Vol. 47, Issue 28, pp. F107-F113 (2008)
http://dx.doi.org/10.1364/AO.47.00F107


View Full Text Article

Enhanced HTML    Acrobat PDF (7123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Field and laboratory measurements using an interferometer spectrometer based on the Sagnac interferometer using a microbolometer array detector are presented. Remotely obtained signatures collected with this instrument and with a cryogenic IR spectrometer are compared and shown to closely correspond. Ground-to-ground and air-to-ground image products are presented that demonstrate the image quality of the sensor. Signal-to-noise measurements are presented and compared with a simple parametric performance model that predicts the sensor performance. The performance model is used to predict the performance of this technology when equipped with cooled detectors.

© 2008 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(100.3175) Image processing : Interferometric imaging
(090.6186) Holography : Spectral holography

ToC Category:
Spectral Imaging Sensors

History
Original Manuscript: March 7, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 11, 2008
Published: August 28, 2008

Citation
Paul G. Lucey, Keith A. Horton, and Tim Williams, "Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array," Appl. Opt. 47, F107-F113 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-28-F107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography (Academic, 1979), pp. 587-594.
  2. W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990). [CrossRef]
  3. P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).
  4. B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).
  5. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensor and results,” Appl. Opt. 35, 2902-2909(1996).
  6. P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).
  7. S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).
  8. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, Vol. 83 of Chemical Analysis (Wiley, 1986).
  9. R. G. Sellar, “The optical engineering of imaging spectrometers based on the Sagnac interferometer,” Ph.D. dissertation (University of Central Florida, 2003).
  10. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometers,” Appl. Opt. 44, 1614-1624 (2005). [CrossRef]
  11. P. W. Kruse, Uncooled Thermal Imaging, Vol. TT51 of Tutorial Texts in Optical Engineering, A. R. Weeks, ed. (SPIE, 2002).
  12. S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.
  13. R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).
  14. R. F. Horton, “Optical design for a high Etendue imaging Fourier transform spectrometer” Proc. SPIE 2819, 300-315 (1996).
  15. W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).
  16. P. J. Minnett and R. G. Sellar, “The High Efficiency Hyperspectral Imager--a new instrument for measurements of the Arctic surface,” presented at 8th Conference on Polar Meteorology and Oceanography (American Meteorological Society, 11 January 2005), poster presentation P1.3.
  17. L. Mertz, Transformations in Optics (Wiley, 1963).
  18. C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited