OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5330–5336

Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light

J. Fekete, Z. Várallyay, and R. Szipőcs  »View Author Affiliations


Applied Optics, Vol. 47, Issue 29, pp. 5330-5336 (2008)
http://dx.doi.org/10.1364/AO.47.005330


View Full Text Article

Enhanced HTML    Acrobat PDF (4315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose one-dimensional photonic bandgap (PB) dielectric structures to be used at grazing incidence in order to obtain an extended bandgap exhibiting considerably reduced reflection loss and dispersion compared to similar structures used at a normal incidence of light. The well-known quarter-wave condition is applied for the design in this specific case, resulting in resonance-free reflection bands without drops in reflection versus wavelength function and a monotonous variation of the group delay dispersion versus wavelength function, which are important issues in femtosecond pulse laser applications. Based on these results we extend our studies to two-dimensional PB structures and provide guidelines to the design of leaking mode-free hollow-core Bragg PB fibers providing anomalous dispersion over most of the bandgap.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.1480) Optical devices : Bragg reflectors
(320.7080) Ultrafast optics : Ultrafast devices
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: February 5, 2008
Revised Manuscript: June 19, 2008
Manuscript Accepted: September 5, 2008
Published: October 7, 2008

Citation
J. Fekete, Z. Várallyay, and R. Szipőcs, "Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light," Appl. Opt. 47, 5330-5336 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-29-5330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, “Thin-Film Optical Filters,” 3rd ed. (Taylor and Francis, 2001). [CrossRef]
  2. F. Mezei, “Novel polarized neutron devices: supermirror and spin component amplifier,” Comm. Phys. (London) 1, 81-85 (1976).
  3. E. J. Mayer, J. Möbius, A. Euteneuer, W. W. Rühle, and R. Szip?cs, “Ultrabroadband chirped mirrors for femtosecond lasers,” Opt. Lett. 22, 528-530 (1997). [CrossRef] [PubMed]
  4. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5 fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009-1011 (1997). [CrossRef] [PubMed]
  5. K. Ferencz and R. Szip?cs, “Recent development of laser optical coatings in Hungary,” Opt. Eng. 32, 2525-2538 (1993). [CrossRef]
  6. A. Stingl, C. Spielmann, F. Krausz, and R. Szip?cs, “Generation of 11 fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204-206 (1994). [CrossRef] [PubMed]
  7. P. St. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  8. G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11, 1613-1620 (2003). [CrossRef] [PubMed]
  9. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12, 3500-3508(2004). [CrossRef] [PubMed]
  10. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  11. M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. Bjarklev, “Confinement loss spectral behavior in hollow-core Bragg fibers,” Opt. Lett. 32, 3164-3166 (2007). [CrossRef] [PubMed]
  12. K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  13. J. Hebling, E. J. Mayer, J. Kuhl, and R. Szip?cs, “Chirped-mirror dispersion-compensated optical parametric oscillator,” Opt. Lett. 20, 919-921 (1995). [CrossRef] [PubMed]
  14. Z. Bor, B. Rácz, G. Szabó, and Z. G. Horváth, “Two-dimensional halo laser performance,” Phys. Lett. A 80, 153-155 (1980). [CrossRef]
  15. Z. Várallyay, J. Fekete, and R. Szip?cs, “Higher-order mode photonic bandgap fibers with reversed dispersion slope,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper JWA8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited