OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5341–5347

Nonlinear registration for scanned retinal images: application to ocular polarimetry

Vincent Nourrit, Juan M. Bueno, Brian Vohnsen, and Pablo Artal  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5341-5347 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (13691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal images of approximately 1° of visual field were recorded with a homemade scanning laser ophthalmoscope. The benefit of using a nonlinear registration technique to improve the summation process when averaging frames, rather than a standard approach based on correlation, was assessed. Results suggest that nonlinear methods can surpass linear transformations, allowing improved contrast and more uniform image quality. The importance of this is also demonstrated with specific polarization measurements to determine the degree of polarization across an imaged retinal area. In such a context, where this parameter of polarization is extracted from a combination of registered images, the benefit of the nonlinear method is further increased.

© 2008 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2980) Image processing : Image enhancement
(110.5405) Imaging systems : Polarimetric imaging
(170.5755) Medical optics and biotechnology : Retina scanning
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Image Processing

Original Manuscript: April 8, 2008
Revised Manuscript: August 17, 2008
Manuscript Accepted: September 8, 2008
Published: October 7, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Vincent Nourrit, Juan M. Bueno, Brian Vohnsen, and Pablo Artal, "Nonlinear registration for scanned retinal images: application to ocular polarimetry," Appl. Opt. 47, 5341-5347 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Quenner, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405-412 (2002). [PubMed]
  2. B. Vohnsen, I. Iglesias, and P. Artal, “Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction,” Proc. SPIE 4964, 24-32 (2003). [CrossRef]
  3. J. J. Hunter, C. J. Cookson, M. L. Kisilak, J. M. Bueno, and M. C. W. Campbell, “Characterizing image quality in a scanning laser ophthalmoscope with differing pinholes and induced scattered light” J. Opt. Soc. Am. A 24, 1284-1295(2007). [CrossRef]
  4. J. M. Wanek, M. Mori, and M. Shahidi, “Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging,” J. Opt. Soc. Am. A 24, 1296-1304(2007). [CrossRef]
  5. D. C. Gray, R. Wolfe, and B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467-473 (2008). [CrossRef]
  6. F. Romero-Borja, K. Venkateswaran, T. J. Hebert, A. Roorda, “Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope” Appl. Opt. 44, 4032-4040 (2005). [CrossRef] [PubMed]
  7. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy” Ophthalmol. Annu. 113 , 1014-1019 (2006). [CrossRef]
  8. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. H. Branham, A. Swaroop, and A. Roorda, “High resolution imaging of foveal cones in patients with inherited retinal degenerations using adaptive optics.” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007). [CrossRef]
  9. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease.” Invest. Ophthalmol. Visual Sci. 48, 2297-2303 (2007). [CrossRef]
  10. A. R. Wade and F. W. Fitzke, “A fast, robust recognition system for low light level image registration and its application to retinal image,” Opt. Express 3, 190-197 (1998). [CrossRef] [PubMed]
  11. V. Nourrit, B. Vohnsen, and P. Artal, “Blind deconvolution for high-resolution confocal scanning laser ophthalmoscopy,” J. Opt. A 7, 585-592 (2005). [CrossRef]
  12. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354-3367 (2006). [CrossRef] [PubMed]
  13. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, “Compact scanning laser ophthalmoscope with high-speed retinal tracker” Appl. Opt. 42, 4621-4632 (2003). [CrossRef] [PubMed]
  14. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688A, 145-151 (2005). [CrossRef]
  15. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731-13744(2007). [CrossRef] [PubMed]
  16. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy.” Opt. Express 14, 487-497 (2006). [CrossRef] [PubMed]
  17. George K. Matsopoulos, Konstantinos K. Delibasis, and Nicolaos A. Mouravliansky, “Medical image registration and fusion techniques: a review,” in Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real Time Systems, S. Stergiopoulos, ed. (CRC Press, 2000). [CrossRef] [PubMed]
  18. V. Nourrit, B. Vohnsen, and P. Artal, “Non-linear correction of eye movements for scanning laser ophthalmoscope imagery,” Invest. Ophthalmol. Visual Sci. , 48, E-Abstract 2765(2007).
  19. N. Ryan, C. Heneghan, and P. de Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image Vision Comput. 22, 883-898(2004). [CrossRef]
  20. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325-376 (1992). [CrossRef]
  21. J. M. Bueno and B. Vohnsen, “Polarimetric high-resolution confocal scanning laser ophthalmoscope,” Vision Res. 45, 3526-3534 (2005). [CrossRef] [PubMed]
  22. B. Vohnsen, I. Iglesias, and P. Artal, “Directional imaging of the retinal cone mosaic,” Opt. Lett. 29, 968-970 (2004). [CrossRef] [PubMed]
  23. B. Vohnsen, I. Iglesias, and P. Artal, “Directional light scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 22, 2606-2612(2005). [CrossRef]
  24. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995). [CrossRef]
  25. J. M. Bueno and J. W. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthal. Physiol. Opt. 21384-392 (2001). [CrossRef]
  26. J. M. Bueno and M. C. W. Campbell, “Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry,” Opt. Lett. 27, 830-832 (2002). [CrossRef]
  27. J. M. Bueno, E. Berrio, and P. Artal, “Aberro-polariscope for the human eye,” Opt. Lett. 28, 1209-1211 (2003). [CrossRef] [PubMed]
  28. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M.Bass, ed. (McGraw-Hill, 1995), Vol. 2, chap. 22.
  29. J. M. Bueno, E. Berrio, M. Ozolinsh, and P. Artal, “Degree of polarization as an objective method of estimating scattering,” J. Opt. Soc. Am. A 21, 1316-1321 (2004). [CrossRef]
  30. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032-40 (1990). [CrossRef] [PubMed]
  31. Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, “Acutance, an objective measure of retinal nerve fibre image clarity,” Br. J. Ophthalmol. 87, 322-326 (2003). [CrossRef] [PubMed]
  32. K. A. Goatman, A. Manivannan, J. H. Hipwell, P. F. Sharp, N. Lois, and J. V. Forrester, “Automatic registration and averaging of ophthalmic autofluorescence images,” in Conference Proceedings in Medical Image Understanding and Analysis (MIUA) (BMVA, 2001), pp. 157-160.
  33. A. Can, C. V. Stewart, B. Roysam, and H. L. Tannenbaum, “A feature based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 347-364 (2002). [CrossRef]
  34. W. E. Hart and M. H. Goldbaum, “Registering retinal images using automatically selected control point pairs,” IEEE International Conference Image Processing, 1994. Proceedings. ICIP-94 (IEEE, 1994), vol. 3, pp. 576-580. [CrossRef]
  35. D. Lloret, J. Serrat, A. M. Lopez, A. Soler, and J. J. Villaneuva, “Retinal image registration using creases as anatomical landmarks,” 15th International Conference on Pattern Recognition (ICPR'00) (IEEE Computer Society, 2000), vol. 3, pp. 3207-3210.
  36. E. Peli, R. Augliere, and G. Timberlake, “Feature-based registration of retinal images,” IEEE Trans. Biomed. Eng. MI-6, 272-278 (1987).
  37. G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic registration of retinal images with global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3, 47-60 (1999). [CrossRef]
  38. R. P. Woods, “Spatial transformation models” in Handbook of Medical Imaging: Processing and Analysis, I. Bankman, ed. (Academic, 2000), pp. 465-490.
  39. H. Deubel and B. Bridgeman, “Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529-538 (1995). [CrossRef] [PubMed]
  40. A. A. Goshtasby, 2D and 3D Image Registration for Medical, Remote Sensing, and Industrial Applications (Wiley, 2005).
  41. A. A. Goshtasby, “Piecewise linear mapping functions for image registration,” Pattern Recognition 19, 459-66 (1986). [CrossRef]
  42. A. A. Goshtasby, “Image registration by local approximation methods,” Image Vision Comput. 6 ( 255-261 (1988). [CrossRef]
  43. J. B. Mulligan, “Recovery of motion parameters from distortion in scanned images,” presented at NASA Image Registration Workshop (IRW97), NASA Goddard Space Flight Center, Greenbelt, Md., 20-21 November 1997.
  44. J. M. Bueno, J. J. Hunter, C. J. Cookson, M. L. Kisilak, and M. C. W. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337-1348 (2007). [CrossRef]
  45. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal never fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730-3735 (1992). [CrossRef] [PubMed]
  46. S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, “Improved contrast of subretinal structures using polarization analysis,” Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003). [CrossRef]
  47. M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Oshako, M. Usui, and T. Iwasaki, “Imaging polarimetry in central serous chorioretinopathy,” Am. J. Ophthalmol. 140, 1014-1019(2005). [CrossRef] [PubMed]
  48. H. Song, Y. Zhao, X. Qi, Y. T. Chui, and S. A. Burns, “Stokes vector analysis of adaptive optics images of the retina,” Opt. Lett. 33, 137-139 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited