OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 29 — Oct. 10, 2008
  • pp: 5348–5353

Empirical relations for the propagation characteristics of diffused channel waveguides

Samit Barai and Anurag Sharma  »View Author Affiliations

Applied Optics, Vol. 47, Issue 29, pp. 5348-5353 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (813 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Empirical relations for the propagation constant and the field profile parameters of integrated optical diffused channel waveguides have been developed. The field profile used is the evanescent secant- hyperbolic field, which has been shown earlier to be a very good approximation for diffused channel- waveguide modes. Least-square fitting has been used to obtain the empirical relations. The results show that the error in empirical relations for the propagation constant is within 2% for a broad range of waveguide parameters. The obtained empirical relations for the field profile and the propagation constant have been used, as an example, to calculate the coupling length of diffused channel- waveguide-based directional couplers.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3730) Integrated optics : Lithium niobate

ToC Category:
Integrated Optics

Original Manuscript: April 8, 2008
Manuscript Accepted: July 16, 2008
Published: October 7, 2008

Samit Barai and Anurag Sharma, "Empirical relations for the propagation characteristics of diffused channel waveguides," Appl. Opt. 47, 5348-5353 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 15, 113-118 (1977). [CrossRef]
  2. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  3. T. M. Benson and P. C. Kendall, “Variational techniques including effective and weighted index methods,” in Progress in Electromagnetic Research (EMW, 1995), Vol. 10, pp. 1-40.
  4. M. Kada, J. Ctyroký, I. Gregora, and J. Schröfel, “WKB analysis of guided and semileaky modes in graded-index anisotropic optical waveguides,” Opt. Commun. 28, 59-63 (1978).
  5. E. Schweig and W. B. Bridges, “Computer analysis of dielectric waveguides-A finite difference method,” IEEE Trans. Microwave Theory Tech. MTT-32, 531-541 (1984). [CrossRef]
  6. R. K. Lagu and R. V. Ramaswamy, “A variational finite-difference method for analyzing channel waveguides with arbitrary index profiles,” IEEE J. Quantum Electron. QE-22, 968-976 (1986). [CrossRef]
  7. F. A. Katsriku, B. M. A. Rahman, and K. T. V. Grattan, “Finite element analysis if diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780-786 (1996). [CrossRef]
  8. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607-608 (1996). [CrossRef]
  9. J. K. Burns, P. H. Klein, E. J. West, and L. E. Plew ,“Ti diffusion in Ti:LiNb3 planar and channel waveguides,” J. Appl. Phys. 50, 6175-6182 (1979). [CrossRef]
  10. A. Sharma and P. Bindal, “Variational analysis of diffused planar and channel waveguides and directional couplers,” J. Opt. Soc. Am. A 11, 2244-2248 (1994). [CrossRef]
  11. A. Sharma and P. Bindal, “Analysis of diffused planar and channel waveguides,” IEEE J. Quantum Electron. 29, 150-153 (1993). [CrossRef]
  12. S. K. Korotoky, W. J. Minfold, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method of estimating the propagation constant of single mode Ti:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. QE-18, 1796-1801 (1982). [CrossRef]
  13. P. K. Mishra and A. Sharma, “Analysis of single mode inhomogeneous planar waveguides,” J. Lightwave Technol. 4, 204-112 (1986). [CrossRef]
  14. A. Di Lallo, A. Cino, C. Conti, and G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Express 8, 232-237 (2001). [CrossRef] [PubMed]
  15. P. Baldi, P. Aschieri, S. Nouh, M. D. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modelling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. QE-31, 997-1008 (1995). [CrossRef]
  16. R. C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. QE-17, 946-959 (1981). [CrossRef]
  17. I. P. Kaminow and J. R. Karruthers, “Optical waveguide layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22, 326-328 (1973). [CrossRef]
  18. E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328-329 (1973). [CrossRef]
  19. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919-933 (1973). [CrossRef]
  20. A. Ghatak and K. Thyagrajan, Optical Electronics (Cambridge U. Press, 2007).
  21. J. Noda, M. Fukuma, and O. Mikami, “Design calculations for directional couplers fabricated by Ti-diffused LiNbO3 waveguides,” Appl. Opt. 20, 2284-2290 (1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited