OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 3 — Jan. 20, 2008
  • pp: 336–345

Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach

Seyoung Moon, Donghyun Kim, and Eunji Sim  »View Author Affiliations


Applied Optics, Vol. 47, Issue 3, pp. 336-345 (2008)
http://dx.doi.org/10.1364/AO.47.000336


View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ a Monte Carlo (MC) algorithm to investigate the decoherence of diffuse photons in turbid media. For the MC simulation of coherent photons, the degree of coherence, defined as a random variable for a photon packet, is associated with a decoherence function that depends on the scattering angle and is updated as a photon interacts with a medium via scattering. Using a slab model, the effects of medium scattering properties were studied, which reveals that a linear random variable model for the degree of coherence is in better agreement with experimental results than a sinusoidal model and that decoherence is quick for the initial few scattering events followed by a slow and gradual decrease of coherence.

© 2008 Optical Society of America

OCIS Codes
(110.4980) Imaging systems : Partial coherence in imaging
(170.1650) Medical optics and biotechnology : Coherence imaging
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 21, 2007
Revised Manuscript: November 8, 2007
Manuscript Accepted: November 16, 2007
Published: January 14, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Seyoung Moon, Donghyun Kim, and Eunji Sim, "Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach," Appl. Opt. 47, 336-345 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-3-336


Sort:  Year  |  Journal  |  Reset  

References

  1. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, "Diffraction tomography for biomedical imaging with diffuse photon density waves," Opt. Lett. 22, 573-575 (1997). [CrossRef] [PubMed]
  2. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, "Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue," Appl. Opt. 38, 5480-5490 (1999). [CrossRef]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process. Mag. 18, 57-75 (2001). [CrossRef]
  4. J. S. Reynolds, S. Yeung, A. Przadka, and K. Webb, "Optical diffusion imaging: a comparative numerical and experimental study," Appl. Opt. 35, 3671-3679 (1996). [CrossRef] [PubMed]
  5. L. T. Perelman, J. Winn, J. Wu, R. R. Dasari, and M. S. Feld, "Photon migration of near-diffusive photons in turbid media: a Lagrangian-based approach," J. Opt. Soc. Am. A 14, 224-229 (1997). [CrossRef]
  6. M. L. Shendeleva and J. A. Molloy, "Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry," Appl. Opt. 45, 7018-7025 (2006). [CrossRef] [PubMed]
  7. M. Sakami, K. Mitra, and T. Vo-Dinh, "Analysis of short-pulse laser photon transport through tissues for optical tomography," Opt. Lett. 27, 336-338 (2002). [CrossRef]
  8. G. Pal, S. Basu, K. Mitra, and T. Vo-Dihn, "Time-resolved optical tomography using short-pulse laser for tumor detection," Appl. Opt. 45, 6270-6282 (2006). [PubMed]
  9. J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine 1: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997). [CrossRef] [PubMed]
  10. S. L. Jacques and J. C. Ramella-Roman, "Polarized light imaging of tissues," in Lasers and Current Optical Techniques in Biology, G. Palumbo and R. Pratesi, eds. (Royal Society of Chemistry, 2004). [CrossRef]
  11. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  12. R. J. Glauber, "The quantum theory of optical coherence," Phys. Rev. 130, 2529-2539 (1963). [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  14. B. Parys, J.-F. Allard, F. Desmullier, D. Houde, and A. Cornet, "Coherence analysis of diffused femtosecond laser pulses," J. Opt. A 6, L23-L27 (2004). [CrossRef]
  15. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995). [CrossRef] [PubMed]
  16. V. R. Daria, C. Saloma, and S. Kawata, "Excitation with a focused, pulsed optical beam in scattering media: diffraction effects," Appl. Opt. 39, 5244-5255 (2000). [CrossRef]
  17. L. V. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model," Opt. Lett. 26, 1191-1193 (2001). [CrossRef]
  18. A. Tycho and T. M. Jørgensen, Comment on "Excitation with a focused, pulsed optical beam in scattering media: diffraction effects," Appl. Opt. 41, 4709-4711 (2002). [CrossRef] [PubMed]
  19. C. Mujat and A. Dogariu, "Statistics of partially coherent beams: a numerical analysis," J. Opt. Soc. Am. A 21, 1000-1003 (2004). [CrossRef]
  20. A. Tycho, T. M. Jørgensen, H. T. Yura, and P. E. Andersen, "Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems," Appl. Opt. 41, 6676-6691 (2002). [CrossRef] [PubMed]
  21. P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jørgensen, and M. H. Frosz, "Advanced modeling of optical coherence tomography systems," Phys. Med. Biol. 49, 1307-1327 (2004). [CrossRef] [PubMed]
  22. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, "Multiple scattering in optical coherence tomography. I. Investigation and modeling," J. Opt. Soc. Am. A 22, 1369-1379 (2005). [CrossRef]
  23. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, "Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography," J. Opt. Soc. Am. A 22, 1380-1388 (2005). [CrossRef]
  24. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).
  25. F. Zernike, "The concept of degree of coherence and its application to optical problems," Physica 5, 785-795 (1938). [CrossRef]
  26. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. USA 101, 16996-17001 (2004). [CrossRef] [PubMed]
  27. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, "Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry," J. Opt. Soc. Am. A 19, 737-744 (2002). [CrossRef]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chap. 3.
  29. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  30. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the Galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  31. S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).
  32. R. Holzlohner and C. R. Menyuk, "Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communications systems," Opt. Lett. , 28, 1894-1896 (2003). [CrossRef] [PubMed]
  33. L. Wang and S. L. Jacques, "Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media," J. Opt. Soc. Am. A 10, 1746-1752 (1993). [CrossRef]
  34. A. Y. Khairullina, "Coherent properties of radiation scattered by a turbid medium," J. Appl. Spectrosc. 11, 778-781 (1969). [CrossRef]
  35. R. Pierrat, J.-J. Greffet, and R. Carminati, "Spatial coherence in strongly scattering media," J. Opt. Soc. Am. A 22, 2329-2337 (2005). [CrossRef]
  36. G. Yao and L. V. Wang, "Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media," Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited