OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 3 — Jan. 20, 2008
  • pp: 474–479

Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides

A. M. Zheltikov  »View Author Affiliations

Applied Optics, Vol. 47, Issue 3, pp. 474-479 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (554 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ray-optic analysis of transmission spectra and the leakage loss of ring-cladding hollow waveguides suggests that such waveguides offer an attractive platform for the creation of compact and efficient biochemical sensors and sensor arrays. The ring cladding in such waveguides serves as a built-in Fabry–Perot interferometer, allowing the detection of few-nanometer-thick molecular layers and ensuring a high sensitivity of transmission spectra of waveguide modes to small changes in the refractive index of an analyte filling the hollow core and air holes in the waveguide cladding.

© 2008 Optical Society of America

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: August 10, 2007
Manuscript Accepted: October 25, 2007
Published: January 18, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

A. M. Zheltikov, "Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides," Appl. Opt. 47, 474-479 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic crystal fibres," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  4. F. S. Ligler and C. A. Rowe-Taitt, eds., Optical Biosensors: Present and Future (Elsevier, 2002).
  5. O. Parriaux and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors," J. Lightwave Technol. 16, 573-582 (1998). [CrossRef]
  6. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, "Sensitivity enhancement of integrated optical sensors by use of thin high-index films," Appl. Opt. 38, 6036-6039 (1999). [CrossRef]
  7. F. Prieto, A. Lobera, D. Jiménez, C. Domínguez, A. Calle, and L. M. Lechuga, "Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensors," J. Lightwave Technol. 18, 966-972 (2000). [CrossRef]
  8. F. Prieto, L. M. Lechuga, A. Calle, A. Llobera, and C. Dominguez, "Optimized silicon antiresonant reflecting optical waveguides for sensing applications," J. Lightwave Technol. 19, 75-83 (2001). [CrossRef]
  9. M. A. Duguay, Y. Kokubun, and T. L. Koch, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  10. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999). [CrossRef]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  12. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  13. S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005). [CrossRef] [PubMed]
  14. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  15. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006). [CrossRef] [PubMed]
  16. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  17. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002). [CrossRef]
  18. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003). [CrossRef] [PubMed]
  19. G. Pickrell, W. Peng, and A. Wang, "Random-hole optical fiber evanescent-wave gas sensing," Opt. Lett. 29, 1476-1478 (2004). [CrossRef] [PubMed]
  20. R. C. Alfernes, Guided Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988), Chap. 4.
  21. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, "Enhanced two-photon biosensing with double-clad photonic crystal fibers," Opt. Lett. 28, 1224-1226 (2003). [CrossRef] [PubMed]
  22. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  23. N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005). [CrossRef]
  24. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  25. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, "Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber," Phys. Rev. A 70, 045802 (2004). [CrossRef]
  26. A. Yariv and P. Yeh, Optical Waves in Crystals New York (Wiley, 1984).
  27. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).
  28. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  29. N. Litchinitser, S. Dunn, B. Usner, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  30. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  31. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  32. M. Miyagi and S. Nishida, "A proposal of low-loss leaky waveguide for submillimeter waves transmission," IEEE Trans. Microwave Theory Tech. 28, 398-401 (1980). [CrossRef]
  33. M. Miyagi and S. Nishida, "Transmission characteristics of dielectric tube leaky waveguide," IEEE Trans. Microwave Theory Tech. 28, 536-541 (1980). [CrossRef]
  34. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  35. G. Gaulitz, "Multiple reflectance interference spectroscopy measurements made in parallel for binding studies," Rev. Sci. Instrum. 76, 06224 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited