OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 30 — Oct. 20, 2008
  • pp: 5604–5615

Aqueous blackbody calibration source for millimeter-wave/terahertz metrology

Charles Dietlein, Zoya Popović, and Erich N. Grossman  »View Author Affiliations


Applied Optics, Vol. 47, Issue 30, pp. 5604-5615 (2008)
http://dx.doi.org/10.1364/AO.47.005604


View Full Text Article

Enhanced HTML    Acrobat PDF (3360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45 ° . For water reflectance R w of 40% at 45 ° in the the W-band, this implies a theoretical effective aperture emissivity of ( 1 R w s 2 R w p 2 ) > 98.8 % . From the the W-band to 450 GHz , the maximum radiometric temperature uncertainty is ± 0.40 K , independent of water temperature. Uncertainty from 450 GHz to 1 THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of 3 K at 1 THz .

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 16, 2008
Manuscript Accepted: June 25, 2008
Published: October 15, 2008

Citation
Charles Dietlein, Zoya Popović, and Erich N. Grossman, "Aqueous blackbody calibration source for millimeter-wave/terahertz metrology," Appl. Opt. 47, 5604-5615 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-30-5604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE 93, 1722-1743 (2005). [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). [CrossRef]
  4. J. Randa, D. K. Walker, A. E. Cox, and R. L. Billinger, “Errors resulting from reflectivity of calibration targets,” IEEE Trans. Geosci. Remote Sens. 43, 50-58 (2005). [CrossRef]
  5. K. Foster and T. Hewison, “The absolute calibration of total power millimeter-wave airborne radiometers,” in Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 1998), pp. 384-386.
  6. C. M. Stickley and M. Filipkowski, “MIcroantenna Arrays: Technology and Applications (MIATA)-an overview,” Proc. SPIE 5619, 47-58 (2004). [CrossRef]
  7. J. A. Shaw and L. S. Fedor, “Improved calibration of infrared radiometers for cloud temperature remote sensing,” Opt. Eng. 32, 1002-1010 (1993). [CrossRef]
  8. I. M. Mason, P. H. Sheather, J. A. Bowles, and G. Davies, “Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer,” Appl. Opt. 35, 629-639 (1996). [CrossRef] [PubMed]
  9. A. C. Parr, “A national measurement system for radiometry, photometry, and pyrometry based upon absolute detectors,” http://physics.nist.gov/Pubs/TN1421/contents.html.
  10. H. W. Yoon, C. E. Gibson, and P. Y. Barnes., “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003). [CrossRef]
  11. G. T. Fraser, C. E. Gibson, H. W. Yoon, and A. C. Parr, ““Once is enough” in radiometric calibrations,” J. Res. Natl. Inst. Stand. Technol. 112, 39-51 (2007).
  12. F. Hengstberger, Absolute Radiometry (Academic, 1989).
  13. E. N. Grossman, C. Dietlein, and A. Luukanen, “Terahertz circular variable filters,” in Proceedings of the 4th ESA Workshop on Millimetre-wave Technology and Applications (European Space Agency, 2006), pp. 353-358 .
  14. M. E. MacDonald, A. Alexanian, R. A. York, Z. Popović, and E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712-718 (2000). [CrossRef]
  15. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metal mesh bandpass filters for the far-infrared,” Appl. Opt. 33, 6046-6052(1994). [CrossRef] [PubMed]
  16. R. H. Giles and T. M. Horgan, “Method for absorbing radiation,” U.S. patent 5,260,513 (9 November, 1993).
  17. P. F. Goldsmith, R. A. Kot, and R. T. Iwasaki, “Microwave radiometer blackbody calibration standard for use at millimeter wavelengths,” Rev. Sci. Instrum. 50, 1120-1122 (1979). [CrossRef] [PubMed]
  18. P. H. Siegel, R. H. Tuffias, and P. Goy, “A simple millimeter-wave blackbody load,” in Proceedings of the 9th International Conference on Space THz Technology (Jet Propulsion Laboratory, 1998), pp. 1-10.
  19. A. E. Cox, J. J. O'Connell, and J. Rice, “Initial results from the infrared calibration and infrared imaging of a microwave calibration target,” in Proceedings of the 2006 IEEE Geoscience and Remote Sensing Symposium (IEEE, 2006), 3463-3465. [CrossRef]
  20. J. B. Fowler, “A third generation water bath based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100, 591-599(1995).
  21. E. F. Zalewski and C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867-2873(1983). [CrossRef] [PubMed]
  22. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991). [CrossRef]
  23. J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 33, 5914-5918 (1994). [CrossRef] [PubMed]
  24. J. H. Lehman and C. L. Cromer, “Optical trap detector for calibration of optical fiber powermeters: coupling efficiency,” Appl. Opt. 41, 6531-6536 (2002). [CrossRef] [PubMed]
  25. J. H. Lehman and C. L. Cromer, “Optical tunnel-trap detector for radiometric measurements,” Metrologia 37, 477-480(2000). [CrossRef]
  26. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373-10379 (1996). [CrossRef]
  27. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297 (NIST, 1994).
  28. Central Bureau of the International Electrotechnical Commission, “Industrial platinum resistance thermometer sensors,” International Electrotechnical Commission (IEC) Publ. 751 (IEC,1996).
  29. G. Zhao, M. ter Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19, 1476-1479 (2002). [CrossRef]
  30. J. Xu, K. W. Plaxco, S. J. Allen, J. E. Bjarnason, and E. R. Brown, “0.15-3.72 THz absorption of aqueous salts and saline solutions,” Appl. Phys. Lett. 90, 1-3 (2007).
  31. C. Rønne, L. Thrane, P.-O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107, 5319-5331 (1997). [CrossRef]
  32. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).
  33. E. L. Shirley, “Revised formulas for diffraction effects with point and extended sources,” Appl. Opt. 37, 6581-6590 (1998). [CrossRef]
  34. E. L. Shirley, “Fraunhofer diffraction effects on total power for a Planckian source,” J. Res. Natl. Inst. Stand. Technol. 106, 775-779 (2001).
  35. H. B. Wallace, “AEM” software.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited