OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G112–G121

Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues

Frank C. De Lucia, Jr., Jennifer L. Gottfried, Chase A. Munson, and Andrzej W. Miziolek  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G112-G121 (2008)
http://dx.doi.org/10.1364/AO.47.00G112


View Full Text Article

Enhanced HTML    Acrobat PDF (3991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate the importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(140.3440) Lasers and laser optics : Laser-induced breakdown
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: March 13, 2008
Revised Manuscript: August 15, 2008
Manuscript Accepted: August 18, 2008
Published: September 16, 2008

Citation
Frank C. De Lucia, Jr., Jennifer L. Gottfried, Chase A. Munson, and Andrzej W. Miziolek, "Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues," Appl. Opt. 47, G112-G121 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.Yinon, ed., Counterterrorist Detection Techniques of Explosives (Elsevier, 2007), p. 454.
  2. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005). [CrossRef] [PubMed]
  3. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447-6454 (1999). [CrossRef]
  4. P. C. Claspy, Y. H. Pao, S. Kwong, and E. Nodov, “Laser optoacoustic detection of explosive vapors,” IEEE J. Quantum Electron. 11, D37-D37 (1975). [CrossRef]
  5. F. C. De Lucia Jr., R. S. Harmon, K. L. McNesby, R. J. Winkel, Jr., and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148-6152 (2003). [CrossRef] [PubMed]
  6. F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination,” Spectrochim. Acta Part B 62, 1399-1404(2007). [CrossRef]
  7. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B 62, 1405-1411 (2007). [CrossRef]
  8. C. López-Moreno, S. Palanco, J. J. Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55-60 (2006). [CrossRef]
  9. J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205-216 (2008). [CrossRef]
  10. M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta Part B 60, 1179 (2005). [CrossRef]
  11. C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B 62, 1519-1527 (2007). [CrossRef]
  12. A. C. Samuels, F. C. De Lucia, Jr., K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  13. J. Amador-Hernandez, J. M. Fernandez-Romero, and M. D. L. de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227-238(2001). [CrossRef]
  14. J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. L. Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256-262 (2006). [CrossRef] [PubMed]
  15. J.-B. Sirven, B. Salle, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhes, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471-1480 (2007). [CrossRef]
  16. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589 (2007). [CrossRef]
  17. J. D. Hybl, S. M. Tysk, S. R. Berry, and M. P. Jordan, “Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection,” Appl. Opt. 45, 8806-8814(2006). [CrossRef] [PubMed]
  18. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215(2003). [CrossRef] [PubMed]
  19. C. A. Munson, F. C. De Lucia Jr, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224 (2005). [CrossRef]
  20. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166-173 (2003). [CrossRef]
  21. G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” J. Chemom. 18, 125-132 (2004). [CrossRef]
  22. S. Navea, R. Tauler, E. Goormaghtigh, and A. de Juan, “Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements,” Proteins Struct. Funct. Bioinf. 63, 527-541 (2006). [CrossRef]
  23. M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,” J. Chemom. 30, 341-351 (2006). [CrossRef]
  24. K. R. Lee, X. Lin, D. C. Park, and S. Eslava, “Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method,” Proteomics 3, 1680-1686 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited