Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula

Not Accessible

Your library or personal account may give you access

Abstract

The Feldkamp–David–Kress (FDK) algorithm is widely adopted for cone-beam reconstruction due to its one-dimensional filtered backprojection structure and parallel implementation. In a reconstruction volume, the conspicuous cone-beam artifact manifests as intensity fall-off along the longitudinal direction (the gantry rotation axis). This effect is inherent to circular cone-beam tomography due to the fact that a cone-beam dataset acquired from circular scanning fails to meet the data sufficiency condition for volume reconstruction. Upon observations of the intensity fall-off phenomenon associated with the FDK reconstruction of a ball phantom, we propose an empirical weight formula to compensate for the fall-off degradation. Specifically, a reciprocal cosine can be used to compensate the voxel values along longitudinal direction during three-dimensional backprojection reconstruction, in particular for boosting the values of voxels at positions with large cone angles. The intensity degradation within the z plane, albeit insignificant, can also be compensated by using the same weight formula through a parameter for radial distance dependence. Computer simulations and phantom experiments are presented to demonstrate the compensation effectiveness of the fall-off effect inherent in circular cone-beam tomography.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Volume fusion for two-circular-orbit cone-beam tomography

Zikuan Chen and Ruola Ning
Appl. Opt. 45(23) 5960-5966 (2006)

Multi-pass approach to reduce cone-beam artifacts in a circular orbit cone-beam CT system

Chulhee Han and Jongduk Baek
Opt. Express 27(7) 10108-10126 (2019)

X-Ray cone-beam phase tomography formulas based on phase-attenuation duality

Xizeng Wu and Hong Liu
Opt. Express 13(16) 6000-6014 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.