OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6763–6768

Measured surface loss from luminescent solar concentrator waveguides

Michael G. Debije, Paul P. C. Verbunt, Brenda C. Rowan, Bryce S. Richards, and Theo L. Hoeks  »View Author Affiliations

Applied Optics, Vol. 47, Issue 36, pp. 6763-6768 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface and edge emissions from dye-filled and dye-topped polycarbonate and polymethyl methacrylate luminescent solar concentrators were measured. We demonstrate that about 40–50% of the absorbed light energy (and 50–70% of the photons) is lost through the top and bottom surfaces of the filled waveguide. In most cases the escape cone losses are greater at the top than the bottom surface.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.7390) Optical devices : Waveguides, planar
(260.2510) Physical optics : Fluorescence
(350.5500) Other areas of optics : Propagation
(350.6050) Other areas of optics : Solar energy
(310.2785) Thin films : Guided wave applications

ToC Category:
Physical Optics

Original Manuscript: June 13, 2008
Revised Manuscript: September 22, 2008
Manuscript Accepted: November 7, 2008
Published: December 12, 2008

Michael G. Debije, Paul P. C. Verbunt, Brenda C. Rowan, Bryce S. Richards, and Theo L. Hoeks, "Measured surface loss from luminescent solar concentrator waveguides," Appl. Opt. 47, 6763-6768 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Hermann, “Luminescent solar concentrators--a review,” Sol. Energy 29, 323-329 (1982). [CrossRef]
  2. I. Baumberg, O. Berezin, A. Drabkin, B. Gorelik, L. Kogan, M. Voskobojnik, and M. Zaidman, “Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures,” Polym. Degrad. Stabil. 73, 403-410(2001). [CrossRef]
  3. K. Barnham, J. L. Marques, and J. Hassard, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197-1199 (2000). [CrossRef]
  4. R. Reisfeld, “Future technological applications of rare-earth-doped materials,” J. Less-Common Met. 93, 243-251(1983). [CrossRef]
  5. S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Solar Energy Mater. Sol. Cells 91, 67-75(2007). [CrossRef]
  6. A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar collector,” Sol. Energy Mater. 76, 655-667 (2004).
  7. A. Cutolo, L. Carlomusto, F. Reale, and I. Rendina, “Tapered and inhomogeneous dielectric light concentrators,” Opt. Laser Technol. 21, 193-197 (1989).
  8. W. A. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. 39, 912-196 (1949). [CrossRef]
  9. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979). [CrossRef] [PubMed]
  10. M. Carrascosa, S. Unamuno, and F. Aguilo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983). [CrossRef] [PubMed]
  11. E. W. Thulstrup, J. Michl, and J. H. Eggers, “Polarization spectra in stretched polymer sheets. II. Separation,” J. Phys. Chem. 74, 3868-3878 (1970). [CrossRef]
  12. E. W. Thulstrup and J. Michl, “A critical comparison of methods for analysis of linear dichroism of solutes in stretched polymers,” J. Phys. Chem. 84, 82-93 (1980). [CrossRef]
  13. L. V. Natarajan, F. M. Stein, and R. E. Blankenship, “Linear dichroism and fluorescence polarization of diphenyl polyenes in stretched polyethylene films,” Chem. Phys. Lett. 95, 525-528 (1983). [CrossRef]
  14. C. Sánchez, B. Villacampa, R. Cases, R. Alcalá, C. Martínez, L. Oriol, and M. Piñol, “Polarized photoluminescence and order parameters of 'in situ' photopolymerized liquid crystal films,” J. Appl. Phys. 87, 274-279 (2000). [CrossRef]
  15. M. van Gurp and Y. Levine, “Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory,” J. Chem. Phys. 90, 4095-4102(1989). [CrossRef]
  16. F. L. Arbeloa, V. Martínez Martínez, T. Arbeloa, and I. L. Arbeloa, “Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films,” J. Photochem. Photobiol. C 8, 85-108 (2007). [CrossRef]
  17. J. Roncali and F. Garnier, “Photon-transport properties of luminescent solar concentrators: analysis and optimization,” Appl. Opt. 23, 2809-2817 (1984). [CrossRef] [PubMed]
  18. M. G. Debije, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Using selectively-reflecting organic mirrors to improve light output from a luminescent solar concentrator,” presented at the World Renewable Energy Conference IX, Florence, Italy, 19-25 August 2006.
  19. M. G. Debije, D. J. Broer, and C. W. M. Bastiaansen, “Effect of dye alignment on the output of a luminescent solar concentrator,” presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007.
  20. B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via the luminescence down-shifting: ray tracing simulations,” Prog. Photovoltaics 15, 27-34 (2007). [CrossRef]
  21. B. S. Richards, A. Shalav, and R. P. Corkish, “A low escape-cone loss luminescent concentrator,” presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited