OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6904–6924

Robust autonomous detection of the defective pixels in detectors using a probabilistic technique

Siddhartha Ghosh, Dirk Froebrich, and Alex Freitas  »View Author Affiliations

Applied Optics, Vol. 47, Issue 36, pp. 6904-6924 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detection of defective pixels in solid-state detectors/sensor arrays has received limited research attention. Few approaches currently exist for detecting the defective pixels using real images captured with cameras equipped with such detectors, and they are ad hoc and limited in their applicability. In this paper, we present a probabilistic novel integrated technique for autonomously detecting the defective pixels in image sensor arrays. It can be applied to images containing rich scene information, captured with any digital camera equipped with a solid-state detector, to detect different kinds of defective pixels in the detector. We apply our technique to the detection of various defective pixels in an experimental camera equipped with a charge coupled device (CCD) array and two out of the four HgCdTe detectors of the UKIRT’s wide field camera (WFCAM) used for infrared (IR) astronomy [ Astron. Astrophys. 467, 777–784 (2007)].

© 2008 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(040.1520) Detectors : CCD, charge-coupled device
(040.3060) Detectors : Infrared
(100.2000) Image processing : Digital image processing
(100.2550) Image processing : Focal-plane-array image processors
(100.5010) Image processing : Pattern recognition

ToC Category:

Original Manuscript: May 14, 2008
Revised Manuscript: October 22, 2008
Manuscript Accepted: September 4, 2008
Published: December 20, 2008

Siddhartha Ghosh, Dirk Froebrich, and Alex Freitas, "Robust autonomous detection of the defective pixels in detectors using a probabilistic technique," Appl. Opt. 47, 6904-6924 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Theuwissen, Solid-State Imaging with Charge-Coupled Devices (Springer, 1995).
  2. J. Janesick, Scientific Charge-Coupled Devices (SPIE Publications, 2001).
  3. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187-210 (2002).
  4. R. R. Joyce, “Observing with infrared arrays,” in Astronomical CCD Observing and Reduction Techniques, Vol. 23 of Astronomical Society of the Pacific Conference Series, S. B. Howell, ed. (1992).
  5. G. H. Rieke, “Infrared detector arrays for astronomy,” Annu. Rev. Astron. Astrophys. 45, 77-115 (2007). [CrossRef]
  6. I. S. Mclean, Electronic Imaging in Astronomy: Detectors and Instrumentation, (Wiley, 1997).
  7. C. A. Gullixson, “Two dimensional imagery,” in Astronomical CCD Observing and Reduction Techniques,” Vol. 23 of Astronomical Society of the Pacific Conference Series, S. B. Howell, ed. (1992).
  8. G. H. Chapman, I. Koren, Z. Koren, J. Dudas, and C. Jung, “On-line identification of faults in fault-tolerant imagers” (IEEE Computer Society, Washington, DC, USA, 2005).
  9. S. Ghosh, I. Marshall, and A. Freitas, “Autonomously detecting the defective pixels in an imaging sensor array using a robust statistical technique,” Proc. SPIE 6808, 680813(2008).
  10. G. J. McLachlan and D. Peel, Finite Mixture Models (Wiley-Interscience, 2000).
  11. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, (Wiley-Interscience, 2000).
  12. M. Casali, A. Adamson, C. Alves de Oliveira, O. Almaini, K. Burch, T. Chuter, J. Elliot, M. Folger, S. Foucaud, N. Hambly, M. Hastie, D. Henry, P. Hirst, M. Irwin, D. Ives, A. Lawrence, K. Laidlaw, D. Lee, J. Lewis, D. Lunney, S. McLay, D. Montgomery, A. Pickup, M. Read, N. Rees, I. Robson, K. Sekiguchi, A. Vick, S. Warren, and B. Woodward, “The UKIRT wide-field camera,” Astron. Astrophys. 467, 777-784 (2007).
  13. G. Chapman and Y. Audet, “Creating 35 mm camera active pixel sensors,” in Proceedings on the 14th International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 99) (IEEE, 1999), pp. 22-30.
  14. B. Jin, N. George, and K. Yeary, “Modeling and analysis of soft-test/repair for CCD-based digital x-ray systems,” IEEE Trans. Instrum. Meas. 52, 1713-1721 (2003).
  15. R. Hill, W. Landsman, D. Lindler, and R. Shaw, “Cosmic ray and hot pixel removal from STIS CCD images,” HST Calibration Workshop, S.Casertano, R.Jedrzejewski, T.Keyes, and M.Stevens, eds. (Space Telescope Science Institute, 1997).
  16. J. Dudas, M. L. La Haye, J. Leung, and G. H. Chapman, “A fault-tolerant active pixel sensor to correct in-field hot-pixel defects” in Proceedings of the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007) (IEEE Computer Society, 2007), pp. 517-525.
  17. E. Courses and T. Surveys, “Influence of terrestrial cosmic rays on the reliability of CCD image sensors--Part 1: Experiments at room temperature,” IEEE Trans. Electron Devices 54, 3260-3266 (2007).
  18. C. D. Mackay, “Charge-coupled devices in astronomy,” Annu. Rev. Astron. Astrophys. 24, 255-283 (1986). [CrossRef]
  19. J. Janesick and T. Elliott, “History and advancement of large array scientific CCD imagers,” in Astronomical CCD Observing and Reduction Techniques, Vol. 23 of Astronomical Society of the Pacific Conference Series, S.B.Howell, ed. (1992).
  20. J. Brailean, R. Kleihorst, S. Efstratiadis, A. Katsaggelos, and R. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272-1292 (1995). [CrossRef]
  21. A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490-530 (2005).
  22. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley Longman, 2001).
  23. M. Sosey, “Updating the nicmos static bad pixel masks,” Tech. rep. (Space Telescope Science Institute, 2002).
  24. C. N. Sabbey, R. G. McMahon, J. R. Lewis, and M. J. Irwin, “Infrared imaging data reduction software and techniques,” in Astronomical Data Analysis Software and Systems X, Vol. 238 of Astronomical Society of the Pacific Conference Series, F.R.Harnden, Jr., F.A.Primini, and H.E.Payne, eds. (2001).
  25. M. Irwin, J. Lewis, S. Hodgkin, P. Bunclark, D. Evans, R. McMahon, J. Emerson, M. Stewart, and S. Beard, “VISTA data flow system: pipeline processing for WFCAM and VISTA,” Proc. SPIE 5493, 411-422 (2004). [CrossRef]
  26. M. Cresitello-Dittmar, T. L. Aldcroft, and D. Morris, “On the fly bad pixel detection for the chandra x-ray observatory's aspect camera,” in Astronomical Data Analysis Software and Systems X, vol. 238, (Astronomical Society of the Pacific, 2001).
  27. B. Jin, N.-J. Park, K. George, N. Park, F. Lombardi, and Y. Kim, “Off-device fault tolerance for digital imaging devices,” Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference,” (IEEE, 2004), pp. 627-632.
  28. J. M. Lopez-Alonso and J. Alda, “Bad pixel identification by means of principal components analysis,” Opt. Eng. 41, 2152-2157 (2002).
  29. J. Dudas, C. Jung, G. Chapman, Z. Koren, and I. Koren, “Robust detection of defects in imaging arrays,” Proc. SPIE 6059, 60590X (2006). [CrossRef]
  30. J. Dudas, C. Jung, L. Wu, G. Chapman, I. Koren, and Z. Koren, “On-line mapping of in-field defects in image sensor arrays,” in Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 06) (IEEE Computer Society, 2006), pp. 439-447 .
  31. T. Yap-Peng and T. Acharya, “A robust sequential approach for the detection of defective pixels in an image sensor,” in Proceeding of IEEE International Conference On Acoustics, Speech, and Signal Processing (ICASSP 99) (IEEE, 1999), pp. 2239-2242.
  32. R. Rogers and A. Riess, “Detection and classification of CCD defects with an artificial neural network,” Publ. Astron. Soc. Pac. 106, 532-541 (1994).
  33. D. Odom, “Differential pixel statistic based priors for image restoration,” MA thesis (UC Santa Cruz, 2006).
  34. D. Odom and P. Milanfar, “Modeling multiscale differential pixel statistics,” Proc. SPIE 6065, 16-24 (2006).
  35. L. Xu and M. Jordan, “On convergence properties of the EM algorithm for Gaussian mixtures,” Neural Comput. 8, 129-151(1996). [CrossRef]
  36. G. McLachlan and D. Peel, “Computing issues for the EM algorithm in mixture models,” in Computing Science and Statistics, Vol. 31, K.Berk and M.Pourahmadi, eds. (Interface Foundation of North America, 1999), pp. 421-430
  37. C. Fraley and A. E. Raftery, “How many clusters? Which clustering method? Answers via model-based cluster analysis,” Comput. J. 41, 578-588 (1998).
  38. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” J. R. Stat. Soc. Ser. B Methodol. 39, 1-38 (1977).
  39. R. Redner and H. Walker, “Mixture densities, maximum likelihood and the em algorithm,” SIAM Rev. 26, 195-239(1984). [CrossRef]
  40. G. McLachlan and K. Basford, Mixture Models. Inference and Applications to Clustering (M. Dekker, 1988).
  41. K. Roeder and L. Wasserman, “Practical Bayesian density estimation using mixtures of norms,” J. Am. Stat. Assoc. 92(1997).
  42. C. Biernacki, G. Celeux, and G. Govaert, “Assessing a mixture model for clustering with the integrated completed likelihood,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 719-725(2000). [CrossRef]
  43. P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian classifier under zero-one loss,” Mach. Learn. 29, 103-130 (1997). [CrossRef]
  44. H. Zhang, “The optimality of Naive Bayes,” in FLAIRS Conference, V. Barr and Z. Markov, eds. (AAAI, 2004).
  45. H. Zhang and J. Su, “Naive Bayesian classifiers for ranking,” in Machine Learning: ECML 2004, Vol. 3201/2004 (Springer Berlin/Heidelberg, 2004), pp. 501-512.
  46. S. Riffat and X. Ma, “Thermoelectrics: a review of present and potential applications,” Appl. Th. Eng. 23, 913-935 (2003). [CrossRef]
  47. G. Min and D. Rowe, “Cooling performance of integrated thermoelectric microcooler,” Solid-State Electron. 43, 923-929(1999).
  48. P. Huber, “Robust statistics: a review,” Ann. Stat. 43, 1041-1061 (1972).
  49. P. Bickel, “On some robust estimates of location,” Ann. Math. Stat. 36, 847-858 (1965).
  50. W. Conover, Practical Nonparametric Statistics, 3rd ed.(Wiley, 1999).
  51. V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed. (Wiley, 1994).
  52. V. Chandola, A. Banerjee, and V. Kumar, “Outlier detection: a survey,” Tech. rep. (University of Minnesota, 2007).
  53. P. Huber, Robust Statistics (Wiley-Interscience, 2004).
  54. C. Biernacki, G. Celeux, and G. Govaert, “Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models,” Comput. Stat. Data Anal. 41, 561-575 (2003). [CrossRef]
  55. A. Lawrence, S. J. Warren, O. Almaini, A. C. Edge, N. C. Hambly, R. F. Jameson, P. Lucas, M. Casali, A. Adamson, S. Dye, J. P. Emerson, S. Foucaud, P. Hewett, P. Hirst, S. T. Hodgkin, M. J. Irwin, N. Lodieu, R. G. McMahon, C. Simpson, I. Smail, D. Mortlock, and M. Folger, “The UKIRT Infrared Deep Sky Survey (UKIDSS),” Mon. Not. R. Astron. Soc. 379, 1599-1617 (2007). [CrossRef]
  56. D. Froebrich and A. Scholz, “Young stars and outflows in the globule IC 1396 W,” Astron. Astrophys. 407, 207-212(2003).
  57. T. Fawcett, “ROC graphs: notes and practical considerations for data mining researchers,” Technical Report HPL-2003-4 (Hewlett Packard Laboratories, 2003).
  58. T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn. Lett. 27, 861-874 (2006). [CrossRef]
  59. J. A. Swets, “Measuring the accuracy of diagnostic systems,” Science 240, 1285-1293 (1988). [CrossRef]
  60. A. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recogn. 30, 1145-1159 (1997). [CrossRef]
  61. C. Ling, J. Huang, and H. Zhang, “AUC: a statistically consistent and more discriminating measure than accuracy,” in Proceedings of the 18th International Joint Conferences on Artificial Intelligence, Vol. 2003, (IJCAI, 2003), pp. 329-341.
  62. E. Bertin and S. Arnouts, “Sextractor: Software for source extraction,” Astron. Astrophys. Suppl. Ser. 117, 393-404(1996). [CrossRef]
  63. M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite mixture models,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 381-396 (2002).
  64. Z. Zivkovic and F. van der Heijden, “Recursive unsupervised learning of finite mixture models,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 651-656 (2004).
  65. D. Peel and G. McLachlan, “Robust mixture modelling using the t distribution,” Stat. Comput. 10, 339-348 (2000). [CrossRef]
  66. M. Svensén and C. Bishop, “Robust Bayesian mixture modelling,” Neurocomputing 64, 235-252 (2005). [CrossRef]
  67. C. Archambeau and M. Verleysen, “Robust Bayesian clustering,” Neural Netw. 20, 129-138 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited